Removable singularities for subsolutions of elliptic equations involving weighted variable exponent Sobolev spaces
Tóm tắt
We study the removability of a singular set for elliptic equations involving weight functions and variable exponents. We consider the case where the singular set satisfies conditions related to some generalization of upper Minkowski content or a net measure, and give sufficient conditions for removability of this singularity for equations in the weighted variable exponent Sobolev spaces
$$W^{1,p(\cdot )}(\Omega ,\vartheta )$$
.
Tài liệu tham khảo
Acerbi, E., Mingione, G.: Gradient estimates for the \(p(x)\)-Laplacean system. Journal für die reine und angewandte Mathematik 584, 117–148 (2005)
Cataldo, V., Cianci, P.: On the removability of singularity for solutions of nonlinear elliptic equations with nonstandard growth. Complex Var. Elliptic Equ. 56(6), 521–531 (2011)
Cianci, P.: Removability of singularity for an anisotropic elliptic equation of second order with nonstandard growth. Nonlinear Anal. Theory Methods Appl. 73(6), 1812–1819 (2010)
Cruz-Uribe, D., Diening, L., Hästö, P.: The maximal operator on weighted variable Lebesgue spaces. Fract. Calc. Appl. Anal. 14(3), 361–374 (2011)
Diening, L., Harjulehto, P., Hästö, P., Ruzicka, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Springer, New York (2011)
Diening, L., Hästö, P.: Muckenhoupt weights in variable exponent spaces. preprint, (2008)
Evans, L.C.: Partial Differential Equations, vol. 19. American Mathematical Society, New York (2010)
Fan, X., Zhao, D.: On the spaces \(L^{p(x)}(\Omega )\) and \(W^{m, p(x)}(\Omega )\). J. Math. Anal. Appl. 263(2), 424–446 (2001)
Yongqiang, F., Shan, Y.: On the removability of isolated singular points for elliptic equations involving variable exponent. Adv. Nonlinear Anal. 5(2), 121–132 (2016)
Gardiner, S.: Removable singularities for subharmonic functions. Pac. J. Math. 147(1), 71–80 (1991)
Harvey, R., Polking, J.: Removable singularities of solutions of linear partial differential equations. Acta Math. 125, 39–56 (1970)
Hirata, K., Ono, T.: Removable sets for continuous solutions of quasilinear elliptic equations with nonlinear source or absorption terms. Ann. Math. 197(1), 41–59 (2018)
Kilpeläinen, T.: Weighted sobolev spaces and capacity. Ann. Acad. Sci. Fennicae Ser. A. I. Math. 19(1), 95–113 (1994)
Koskela, P., Martio, O.: Removability theorems for solutions of degenerate elliptic partial differential equations. Ark. Mat. 31(2), 339–353 (1993)
Kováčik, O., Rákosník, J.: On spaces \(L^{p(x)}\) and \(W^{k, p(x)}\). Czechoslov. Math. J. 41(4), 592–618 (1991)
Liskevich, V., Skrypnik, I.I.: Isolated singularities of solutions to quasi-linear elliptic equations with absorption. J. Math. Anal. Appl. 338(1), 536–544 (2008)
Mamedov, F.I., Harman, A.: On the removability of isolated singular points for degenerating nonlinear elliptic equations. Nonlinear Anal. Theory Methods Appl. 71(12), 6290–6298 (2009)
Miller, N.: Weighted Sobolev spaces and pseudodifferential operators with smooth symbols. Trans. Am. Math. Soc. 269(1), 91–109 (1982)
Riihentaus, J.: Removable sets for subharmonic functions. Pac. J. Math. 194(1), 199–208 (2000)
Skrypnik, I.I.: Removability of an isolated singularity of solutions of nonlinear elliptic equations with absorption. Ukr. Math. J. 57(7), 1149–1166 (2005)
Turesson, B.O.: Nonlinear Potential Theory and Weighted Sobolev Spaces, vol. 1736. Springer, Berlin (2000)
Unal, C., Aydın, I.: Compact embeddings of weighted variable exponent Sobolev spaces and existence of solutions for weighted \(p(\cdot )\)-laplacian. Complex Var. Elliptic Equ. 66(10), 1755–1773 (2021)
Vàzquez, J.L., Véron, L.: Removable singularities of some strongly nonlinear elliptic equations. Manuscr. Math. 33(2), 129–144 (1980)