Remote sensing of subtropical tree diversity: The underappreciated roles of the practical definition of forest canopy and phenological variation

Elsevier BV - Tập 10 - Trang 100122 - 2023
Yongchao Liu1, Ruyun Zhang1, Chen-Feng Lin2, Zhaochen Zhang1, Ran Zhang1, Kankan Shang3, Mingshui Zhao4, Jingyue Huang1, Xiaoning Wang1, You Li1, Yulin Zeng1, Yun-Peng Zhao2, Jian Zhang1, Dingliang Xing1
1Zhoushan Archipelago Observation and Research Station, Institute of Eco-Chongming (IEC), Zhejiang Tiantong Forest Ecosystem National Observation Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
2Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
3Shanghai Chenshan Botanical Garden, Shanghai 201602, China
4Tianmushan National Nature Reserve Management Bureau, Hangzhou, 311311, China

Tài liệu tham khảo

Ali, 2017, Retrieval of specific leaf area from Landsat-8 surface reflectance data using statistical and physical models, IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens., 10, 3529, 10.1109/JSTARS.2017.2690623 Arekhi, 2017, Can tree species diversity be assessed with Landsat data in a temperate forest?, Environ. Monit. Assess., 189, 586, 10.1007/s10661-017-6295-6 Asner, 2015, Quantifying forest canopy traits: imaging spectroscopy versus field survey, Remote Sens. Environ., 158, 15, 10.1016/j.rse.2014.11.011 Berger, 1970, Diversity of planktonic foraminifera in deep-sea sediments, Science, 168, 1345, 10.1126/science.168.3937.1345 Cavender-Bares, 2020 Cheng, 1991 Chrysafis, 2020, Predicting tree species diversity using geodiversity and Sentinel-2 multi-seasonal spectral information, Sustainability, 12, 9250, 10.3390/su12219250 Clevers, 2013, Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3, Int. J. Appl. Earth Obs. Geoinf., 23, 344 Da, 2009, Altitudinal zonation of human-disturbed vegetation on Mt. Tianmu, eastern China, Ecol. Res., 24, 1287, 10.1007/s11284-009-0613-6 Ding, 2010 Dogan, 2006, A new approach to diversity indices – modeling and mapping plant biodiversity of nallihan (A3-Ankara/Turkey) forest ecosystem in frame of geographic information systems, Biodivers. Conserv., 15, 855, 10.1007/s10531-004-2937-4 Drusch, 2012, Sentinel-2: ESA's optical high-resolution mission for GMES operational services, Remote Sens. Environ., 120, 25, 10.1016/j.rse.2011.11.026 Enache, 2022 Geladi, 1986, Partial least-squares regression: a tutorial, Anal. Chim. Acta, 185, 1, 10.1016/0003-2670(86)80028-9 Giam, 2017, Global biodiversity loss from tropical deforestation, Proc. Natl. Acad. Sci. USA, 114, 5775, 10.1073/pnas.1706264114 Gorelick, 2017, Google earth engine: planetary-scale geospatial analysis for everyone, Remote Sens. Environ., 202, 18, 10.1016/j.rse.2017.06.031 Guanter, 2015, The EnMAP spaceborne imaging spectroscopy mission for earth observation, Rem. Sens., 7, 8830, 10.3390/rs70708830 Hill, 1973, Diversity and Evenness: a unifying notation and its consequences, Ecology, 54, 427, 10.2307/1934352 Jiang, 1992 Kerr, 2003, From space to species: ecological applications for remote sensing, Trends Ecol. Evol., 18, 299, 10.1016/S0169-5347(03)00071-5 Key, 2001, A comparison of multispectral and multitemporal information in high spatial resolution imagery for classification of individual tree species in a temperate hardwood forest, Remote Sens. Environ., 75, 100, 10.1016/S0034-4257(00)00159-0 Kokaly, 2009, Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies, Remote Sens. Environ., 113, S78, 10.1016/j.rse.2008.10.018 Kuhn, 2008, Building predictive models in R using the caret package, J. Stat. Software, 28, 1 Lee, 2015, An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities, Remote Sens. Environ., 167, 6, 10.1016/j.rse.2015.06.012 Levin, 2007, Predicting mountain plant richness and rarity from space using satellite-derived vegetation indices, Divers. Distrib., 13, 692, 10.1111/j.1472-4642.2007.00372.x Liu, 2023, Mapping tree species diversity in temperate montane forests using Sentinel-1 and Sentinel-2 imagery and topography data, Remote Sens. Environ., 292, 10.1016/j.rse.2023.113576 Lymburner, 2000, Estimation of canopy-average surface-specific leaf area using Landsat TM data, Photogramm. Eng. Rem. Sens., 66, 183 Ma, 2019, Inferring plant functional diversity from space: the potential of Sentinel-2, Remote Sens. Environ., 233, 10.1016/j.rse.2019.111368 Madonsela, 2017, Multi-phenology WorldView-2 imagery improves remote sensing of savannah tree species, Int. J. Appl. Earth Obs. Geoinf., 58, 65 Madonsela, 2017, Remote sensing of species diversity using Landsat 8 spectral variables, ISPRS J. Photogrammetry Remote Sens., 133, 116, 10.1016/j.isprsjprs.2017.10.008 Mallinis, 2020, A random forest modelling procedure for a multi-sensor assessment of tree species diversity, Rem. Sens., 12, 1210, 10.3390/rs12071210 Mohammadi, 2010, Possibility investigation of tree diversity mapping using Landsat ETM+ data in the Hyrcanian forests of Iran, Remote Sens. Environ., 114, 1504, 10.1016/j.rse.2010.02.004 Newbold, 2015, Global effects of land use on local terrestrial biodiversity, Nature, 520, 45, 10.1038/nature14324 Ollinger, 2008, Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: functional relations and potential climate feedbacks, Proc. Natl. Acad. Sci. USA, 105, 19336, 10.1073/pnas.0810021105 Palmer, 2002, Quantitative tools for perfecting species lists, Environmetrics, 13, 121, 10.1002/env.516 Pau, 2022, Poor relationships between NEON airborne observation platform data and field-based vegetation traits at a mesic grassland, Ecology, 103, 10.1002/ecy.3590 Potapov, 2021, Mapping global forest canopy height through integration of GEDI and Landsat data, Remote Sens. Environ., 253, 10.1016/j.rse.2020.112165 2020 Rahbek, 2004, The role of spatial scale and the perception of large-scale species-richness patterns, Ecol. Lett., 8, 224, 10.1111/j.1461-0248.2004.00701.x Reichstein, 2019, Deep learning and process understanding for data-driven earth system science, Nature, 566, 195, 10.1038/s41586-019-0912-1 Rocchini, 2021, From zero to infinity: minimum to maximum diversity of the planet by spatio-parametric Rao's quadratic entropy, Global Ecol. Biogeogr., 30, 1153, 10.1111/geb.13270 Schmidtlein, 2017, The spectral variability hypothesis does not hold across landscapes, Remote Sens. Environ., 192, 114, 10.1016/j.rse.2017.01.036 Schneider, 2017, Mapping functional diversity from remotely sensed morphological and physiological forest traits, Nat. Commun., 8, 1441, 10.1038/s41467-017-01530-3 Schweiger, 2022, Plant beta-diversity across biomes captured by imaging spectroscopy, Nat. Commun., 13, 2767, 10.1038/s41467-022-30369-6 Shannon, 1948, A mathematical theory of communication, Bell Syst. Tech. J., 27, 379, 10.1002/j.1538-7305.1948.tb01338.x Simpson, 1949, Measurement of diversity, Nature, 163, 10.1038/163688a0 Torresani, 2019, Estimating tree species diversity from space in an alpine conifer forest: the Rao's Q diversity index meets the spectral variation hypothesis, Ecol. Inf., 52, 26, 10.1016/j.ecoinf.2019.04.001 Townsend, 2003, Application of imaging spectroscopy to mapping canopy nitrogen in the forests of the central appalachian mountains using hyperion and aviris, IEEE Trans. Geosci. Rem. Sens., 41, 1347, 10.1109/TGRS.2003.813205 Turner, 2014, Sensing biodiversity, Science, 346, 301, 10.1126/science.1256014 Ustin, 2010, Remote sensing of plant functional types, New Phytol., 186, 795, 10.1111/j.1469-8137.2010.03284.x Wang, 2019, Remote sensing of terrestrial plant biodiversity, Remote Sens. Environ., 231, 10.1016/j.rse.2019.111218 Wang, 2022, Seasonal patterns of spectral diversity at leaf and canopy scales in the Cedar Creek prairie biodiversity experiment, Remote Sens. Environ., 280, 10.1016/j.rse.2022.113169 Wang, 2018, Influence of species richness, evenness, and composition on optical diversity: a simulation study, Remote Sens. Environ., 211, 218, 10.1016/j.rse.2018.04.010 Wang, 2018, The spatial sensitivity of the spectral diversity–biodiversity relationship: an experimental test in a prairie grassland, Ecol. Appl., 28, 541, 10.1002/eap.1669 Williams, 2021, Remote spectral detection of biodiversity effects on forest biomass, Nat. Ecol. Evol., 5, 46, 10.1038/s41559-020-01329-4 Woodcock, 1987, The factor of scale in remote sensing, Remote Sens. Environ., 21, 311, 10.1016/0034-4257(87)90015-0 Wu, 2016, Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests, Science, 351, 972, 10.1126/science.aad5068 Zhang, 2014, Estimating spatial variation in Alberta forest biomass from a combination of forest inventory and remote sensing data, Biogeosciences, 11, 2793, 10.5194/bg-11-2793-2014 Zhang, 2021, A taxonomic and phylogenetic perspective on plant community assembly along an elevational gradient in subtropical forests, J. Plant Ecol., 14, 702, 10.1093/jpe/rtab026