Remote estimation of chlorophyll a concentrations over a wide range of optical conditions based on water classification from VIIRS observations

Remote Sensing of Environment - Tập 241 - Trang 111735 - 2020
Guangjia Jiang1,2,3, Steven A. Loiselle4, Dingtian Yang3, Ronghua Ma1, Wen Su5, Changjun Gao6
1Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
2South China Sea Environment Monitoring Center, State Oceanic Administration, Guangzhou 510300, China
3Guangdong Key Laboratory of Ocean Remote Sensing (South China Sea Institute of Oceanology Chinese Academy of Sciences), Guangzhou 510300, China
4Dipartimento Farmaco Chimico Tecnologico, CSGI, University of Siena, Siena, Italy
5South China Sea Institute of Planning and Environmental Research, State Oceanic Administration, Guangzhou 510310, China
6Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China

Tài liệu tham khảo

Antoine, 1995, Oceanic primary production. 2. Estimation at global scale from satellite (Coastal Zone Color Scanner) chlorophyll, Global Biogeochem. Cy., 10, 57, 10.1029/95GB02832 Barnes, 1998, Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1, IEEE T. Geosci. Remote, 36, 1088, 10.1109/36.700993 Bidigare, 1990, In-vivo absorption properties of algal pigments, 290 Binding, 2005, Estimating suspended sediment concentrations from ocean colour measurements in moderately turbid waters; the impact of variable particle scattering properties, Remote Sens. Environ., 94, 373, 10.1016/j.rse.2004.11.002 Boczar, 1989, Organization and comparison of chlorophyll-protein complexes from two fucoxanthin-containing algae: Nitzschia closterium (Bacillariophyceae) and Isochrysis galbana (Prymnesiophyceae), Plant Cell Physiol, 30, 1047 Boyer, 2009, Phytoplankton bloom status: chlorophyll a biomass as an indicator of water quality condition in the southern estuaries of Florida, USA, Ecol. Indic., 9, S56, 10.1016/j.ecolind.2008.11.013 Cannizzaro, 2006, Estimating chlorophyll a concentrations from remote-sensing reflectance in optically shallow waters, Remote Sens. Environ., 101, 13, 10.1016/j.rse.2005.12.002 Chen, 2007, Remotely sensed assessment of water quality levels in the Pearl River Estuary, China, Mar. Pollut. Bull., 54, 1267, 10.1016/j.marpolbul.2007.03.010 Concha, 2016, Retrieval of color producing agents in Case 2 waters using Landsat 8, Remote Sens. Environ., 185, 95, 10.1016/j.rse.2016.03.018 Dall'Olmo, 2003, Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters, Geophys. Res. Lett., 30, 1938, 10.1029/2003GL018065 Darecki, 2003, Optical characteristics of two contrasting Case 2 waters and their influence on remote sensing algorithms, Cont. Shelf Res., 23, 237, 10.1016/S0278-4343(02)00222-4 Dierssen, 2006, Red and black tides: quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments, Limnol. Oceanngy., 51, 2646, 10.4319/lo.2006.51.6.2646 Duan, 2009, Two-decade reconstruction of algal blooms in China’s Lake Taihu, Environ. Sci. Technol., 43, 3522, 10.1021/es8031852 Feng, 2005, Modeling spectral reflectance of optically complex waters using bio-optical measurements from Tokyo Bay, Remote Sens. Environ., 99, 232 Feng, 2019, Monitoring and understanding the water transparency changes of fifty large lakes on the Yangtze Plain based on long-term MODIS observations, Remote Sens. Environ., 221, 675, 10.1016/j.rse.2018.12.007 Ferrari, 1999, A method using chemical oxidation to remove light absorption by phytoplankton pigments, J. Phycol., 35, 1090, 10.1046/j.1529-8817.1999.3551090.x Fukushima, 1996, Dissolved organic carbon in a eutrophic lake; dynamics, biodegradability and origin, Aquat. Sci., 58, 139, 10.1007/BF00877112 Gersberg, 1986, Role of aquatic plants in wastewater treatment by artificial wetlands, Water Res., 20, 363, 10.1016/0043-1354(86)90085-0 Gilerson, 2010, Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands, Opt. Express, 18, 24109, 10.1364/OE.18.024109 Gitelson, 1993, Quantitative remote sensing methods for real-time monitoring of inland waters quality, Int. J. Remote Sens., 14, 1269, 10.1080/01431169308953956 Gitelson, 2008, A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation, Remote Sens. Environ., 112, 3582, 10.1016/j.rse.2008.04.015 Gohin, 2002, A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters, Int. J. Remote Sens., 23, 1639, 10.1080/01431160110071879 Gons, 1999, Optical teledetection of chlorophyll a in turbid inland waters, Environ. Sci. Technol., 33, 1127, 10.1021/es9809657 Gons, 2002, A chlorophyll-retrieval algorithm for satellite imagery (Medium Resolution Imaging Spectrometer) of inland and coastal waters, J. Plankton Res., 24, 947, 10.1093/plankt/24.9.947 Gordon, 1983, Remote assessment of ocean color for interpretation of satellite visible imagery: a review, 113, 1983, 10.1029/LN004 Gower, 1999, Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS, Int. J. Remote Sens., 20, 1771, 10.1080/014311699212470 Green, 1994, Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters, Limnol. Oceanogr., 39, 1903, 10.4319/lo.1994.39.8.1903 Gurlin, 2011, Remote estimation of chl-a concentration in turbid productive waters-return to a simple two-band NIR-red model?, Remote Sens. Environ., 115, 3479, 10.1016/j.rse.2011.08.011 Hieronymi, 2017, The OLCI Neural Network Swarm (ONNS): a bio-geo-optical algorithm for open ocean and coastal waters, Front. Mar. Sci., 4, 140, 10.3389/fmars.2017.00140 Ho, 2017, Using Landsat to extend the historical record of lacustrine phytoplankton blooms: a Lake Erie case study, Remote Sens. Environ., 191, 273, 10.1016/j.rse.2016.12.013 Hu, 2009, A novel ocean color index to detect floating algae in the global oceans, Remote Sens. Environ., 113, 2118, 10.1016/j.rse.2009.05.012 Hu, 2015, A harmful algal bloom of Karenia brevis in the northeastern Gulf of Mexico as revealed by MODIS and VIIRS: a comparison, Sensors, 15, 2873, 10.3390/s150202873 Huang, 2003, The characteristics of nutrients and eutrophication in the Pearl River Estuary, China, Mar. Pollut. Bull., 47, 30, 10.1016/S0025-326X(02)00474-5 Huang, 2014, Assessment of water constituents in highly turbid productive water by optimization bio-optical retrieval model after optical classification, J. Hydrol., 519, 1572, 10.1016/j.jhydrol.2014.09.007 Jackson, 2017, An improved optical classification scheme for the Ocean Colour Essential Climate Variable and its applications, Remote Sens. Environ., 203, 152, 10.1016/j.rse.2017.03.036 Jiang, 2015, Remote sensing of particulate organic carbon dynamics in a eutrophic lake (Taihu Lake, China), Sci. Total Environ., 532, 245, 10.1016/j.scitotenv.2015.05.120 Jiang, 2019, An absorption-specific approach to examining dynamics of particulate organic carbon from VIIRS observations in inland and coastal waters, Remote Sens. Environ., 224, 29, 10.1016/j.rse.2019.01.032 Kajiyama, 2018, Algorithms merging for the determination of chlorophyll-a concentration in the Black Sea, IEEE Geosci. Remote S., 16, 677, 10.1109/LGRS.2018.2883539 Koponen, 2007, A case study of airborne and satellite remote sensing of a spring bloom event in the Gulf of Finland, Cont. Shelf Res., 27, 228, 10.1016/j.csr.2006.10.006 Le, 2009, Specific absorption coefficient and the phytoplankton package effect in Lake Taihu, China, Hydrobiologia, 619, 27, 10.1007/s10750-008-9579-6 Le, 2009, A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: the case of Taihu Lake, China, Remote Sens. Environ., 113, 1175, 10.1016/j.rse.2009.02.005 Le, 2011, Remote estimation of chlorophyll a in optically complex waters based on optical classification, Remote Sens. Environ., 115, 725, 10.1016/j.rse.2010.10.014 Le, 2013, Evaluation of chlorophyll-a remote sensing algorithms for an optically complex estuary, Remote Sens. Environ., 129, 75, 10.1016/j.rse.2012.11.001 Lee, 2002, Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters, Appl. Opt., 41, 5755, 10.1364/AO.41.005755 Lee, 2016, On the modeling of hyperspectral remote-sensing reflectance of high-sediment-load waters in the visible to shortwave-infrared domain, Appl. Opt., 55, 1738, 10.1364/AO.55.001738 Li, 2010, Assessment of soil erosion and sediment yield in Liao watershed, Jiangxi province, China, using USLE, GIS, and RS, J. Earth Sci-China., 21, 941, 10.1007/s12583-010-0147-4 Li, 2013, An inversion model for deriving inherent optical properties of inland waters: establishment, validation and application, Remote Sens. Environ., 135, 150, 10.1016/j.rse.2013.03.031 Lohrenz, 2003, Phytoplankton spectral absorption as influenced by community size structure and pigment composition, J. Plankton Res., 25, 35, 10.1093/plankt/25.1.35 Loiselle, 2009, Optical characterization of chromophoric dissolved organic matter using wavelength distribution of absorption spectral slopes, Limnol. Oceanogr., 54, 590, 10.4319/lo.2009.54.2.0590 Lubac, 2007, Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea, Remote Sens. Environ., 110, 45, 10.1016/j.rse.2007.02.012 Ma, 2011, Approximate bottom contribution to remote sensing reflectance in Taihu Lake, China, J. Great Lakes Res., 37, 18, 10.1016/j.jglr.2010.12.002 Matthews, 2012, An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters, Remote Sens. Environ., 124, 637, 10.1016/j.rse.2012.05.032 McClain, 2009, A decade of satellite ocean color observations, Annu. Rev. Mar. Sci., 1, 19, 10.1146/annurev.marine.010908.163650 Mishra, 2012, Normalized difference chlorophyll index: a novel model for remote estimation of chlorophyll-a concentration in turbid productive waters, Remote Sens. Environ., 117, 394, 10.1016/j.rse.2011.10.016 Mobley, 1999, Estimation of the remote sensing reflectance from above-surface measurements, Appl. Opt., 38, 7442, 10.1364/AO.38.007442 Mobley, 2013 Monolisha, 2018, Optical classification of the coastal waters of the Northern Indian Ocean, Front. Mar. Sci., 5, 87, 10.3389/fmars.2018.00087 Moore, 2001, A fuzzy logic classification scheme for selecting and blending satellite ocean color algorithms, IEEE T. Geosc. Remote, 39, 1764, 10.1109/36.942555 Moore, 2014, An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters, Remote Sens. Environ., 143, 97, 10.1016/j.rse.2013.11.021 Morel, 1977, Analysis of variations in ocean color, Limnol. Oceanogr., 22, 709, 10.4319/lo.1977.22.4.0709 Moses, 2017, Chapter 3 atmospheric correction for inland waters, 69 Mueller, 2003 Murphy, 2011, Using VIIRS to provide data continuity with MODIS, 3, 1212 O’Reilly, 1998, Ocean color chlorophyll algorithms for SeaWiFS, J. Geophys. Res., 103, 24937, 10.1029/98JC02160 O’Reilly, 2000, Ocean color chlorophyll a algorithms for seawifs, oc2, and oc4: version 4, volume 11, 9 Qi, 2015, VIIRS observations of a Karenia brevis bloom in the northeastern Gulf of Mexico in the absence of a fluorescence band, IEEE Geosci. Remote S., 12, 2213, 10.1109/LGRS.2015.2457773 Raqueño, 2003 Raqueño, 2000, Hyperspectral analysis tools for themultiparameter inversion of water quality factors in coastal regions, Imaging Spectrometry VI. SPIE., 4132, 10.1117/12.406601 Röttgers, 2014, Mass-specific light absorption coefficients of natural aquatic particles in the near-infrared spectral region, Limnol. Oceanogr., 59, 1449, 10.4319/lo.2014.59.5.1449 Ruddick, 2000, Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters, Appl. Opt., 39, 897, 10.1364/AO.39.000897 Salgado-Hernanz, 2019, Trends in phytoplankton phenology in the Mediterranean Sea based on ocean-colour remote sensing, Remote Sens. Environ., 221, 50, 10.1016/j.rse.2018.10.036 Sathyendranath, 2004, Discrimination of diatoms from other phytoplankton using ocean colour data, Mar. Ecol-Prog. Ser., 272, 59, 10.3354/meps272059 Saulquin, 2019, Interpolated fields of satellite-derived multi-algorithm chlorophyll-a estimates at global and European scales in the frame of the European Copernicus-Marine Environment Monitoring Service, J. Oper. Res. Oceanogr., 12, 47 Schalles, 1998, Estimation of chlorophyll a from time series measurements of high spectral resolution reflectance in an eutrophic lake, J. Appl. Phycol., 34, 383, 10.1046/j.1529-8817.1998.340383.x Shen, 2010, Medium resolution imaging spectrometer (MERIS) estimation of chlorophyll-a concentration in the turbid sediment-laden waters of the Changjiang (Yangtze) Estuary, Int. J. Remote Sens., 31, 4635, 10.1080/01431161.2010.485216 Shi, 2018, Deriving total suspended matter concentration from the near-infrared-based inherent optical properties over turbid waters: a case study in Lake Taihu, Remote Sens., 10, 333, 10.3390/rs10020333 Smith, 2016, 6 Smith, 2018, An optimized chlorophyll a switching algorithm for MERIS and OLCI in phytoplankton-dominated waters, Remote Sens. Environ., 215, 217, 10.1016/j.rse.2018.06.002 Spyrakos, 2018, Optical types of inland and coastal waters, Limnol. Oceanogr., 63, 846, 10.1002/lno.10674 Steinmetz, 2011, Atmospheric correction in presence of sun glint: application to MERIS, Opt. Express, 19, 9783, 10.1364/OE.19.009783 Strickland, 1972 Sun, 2012, Specific inherent optical quantities of complex turbid inland waters, from the perspective of water classification, Photoch. Photobio. Sci., 11, 1299, 10.1039/c2pp25061f Tilstone, 2011, An assessment of chlorophyll-a algorithms available for SeaWiFS in coastal and open areas of the Bay of Bengal and Arabian Sea, Remote Sens. Environ., 115, 2277, 10.1016/j.rse.2011.04.028 Van Der Woerd, 2008, HYDROPT: a fast and flexible method to retrieve chlorophyll-a from multispectral satellite observations of optically complex coastal waters, Remote Sens. Environ., 112, 1795, 10.1016/j.rse.2007.09.001 Wang, 2007, The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing, Opt. Express, 15, 15722, 10.1364/OE.15.015722 Wang, 2013, Impacts of VIIRS SDR performance on ocean color products, J. Geophys. Res.-Atmos., 118, 10347, 10.1002/jgrd.50793 Wang, 2013, Remote sensing of water optical property for China’s inland lake Taihu using the SWIR atmospheric correction with 1640 and 2130 nm bands, IEEE J-STARS, 6, 2505 Wang, 2016, NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors, Opt. Express, 24, 20437, 10.1364/OE.24.020437 Wu, 2013, An approach for developing Landsat-5 TM-based retrieval models of suspended particulate matter concentration with the assistance of MODIS, ISPRS J. Photogramm., 85, 84, 10.1016/j.isprsjprs.2013.08.009 Wu, 2015, Statistical model development and estimation of suspended particulate matter concentrations with Landsat 8 OLI images of Dongting Lake, China, Int. J. Remote Sens., 36, 343, 10.1080/01431161.2014.995273 Xie, 2005, Organ distribution and bioaccumulation of microcystins in freshwater fish at different trophic levels from the eutrophic Lake Chaohu, China, Environ. Toxicol., 20, 293, 10.1002/tox.20120 Xue, 2017, An approach to correct the effects of phytoplankton vertical nonuniform distribution on remote sensing reflectance of cyanobacterial bloom waters, Limnol. Oceanogr-Meth., 15, 302, 10.1002/lom3.10158 Xue, 2019, Optical classification of the remote sensing reflectance and its application in deriving the specific phytoplankton absorption in optically complex lakes, Remote Sens., 11, 184, 10.3390/rs11020184 Yang, 2010, An enhanced three-band index for estimating chlorophyll-a in turbid Case-II waters: case studies of Lake Kasumigaura, Japan and Lake Dianchi, China, IEEE Geosci. Remote S., 7, 655, 10.1109/LGRS.2010.2044364 Yu, 2010, Long-term water temperature variations in Daya Bay, China using satellite and in situ observations, Terr. Atmos. Ocean. Sci., 21, 393, 10.3319/TAO.2009.05.26.01(Oc) Zhang, 2007, A study of absorption characteristics of chromphoric dissolved organic matter and particles in Lake Taihu, China, Hydrobiologia, 592, 105, 10.1007/s10750-007-0724-4 Zhang, 2011, Temporal and spatial variability of chlorophyll a concentration in Lake Taihu using MODIS time-series data, Hydrobiologia, 661, 235, 10.1007/s10750-010-0528-9 Zhang, 2015, Algorithms and schemes for chlorophyll a estimation by remote sensing and optical classification for turbid Lake Taihu, China, IEEE J-STARS, 8, 350 Zimba, 2006, Remote estimation of chlorophyll concentration in hypereutrophic aquatic systems: model tuning and accuracy optimization, Aquaculture, 256, 272, 10.1016/j.aquaculture.2006.02.038