Remote estimation of chlorophyll a concentrations over a wide range of optical conditions based on water classification from VIIRS observations
Tài liệu tham khảo
Antoine, 1995, Oceanic primary production. 2. Estimation at global scale from satellite (Coastal Zone Color Scanner) chlorophyll, Global Biogeochem. Cy., 10, 57, 10.1029/95GB02832
Barnes, 1998, Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1, IEEE T. Geosci. Remote, 36, 1088, 10.1109/36.700993
Bidigare, 1990, In-vivo absorption properties of algal pigments, 290
Binding, 2005, Estimating suspended sediment concentrations from ocean colour measurements in moderately turbid waters; the impact of variable particle scattering properties, Remote Sens. Environ., 94, 373, 10.1016/j.rse.2004.11.002
Boczar, 1989, Organization and comparison of chlorophyll-protein complexes from two fucoxanthin-containing algae: Nitzschia closterium (Bacillariophyceae) and Isochrysis galbana (Prymnesiophyceae), Plant Cell Physiol, 30, 1047
Boyer, 2009, Phytoplankton bloom status: chlorophyll a biomass as an indicator of water quality condition in the southern estuaries of Florida, USA, Ecol. Indic., 9, S56, 10.1016/j.ecolind.2008.11.013
Cannizzaro, 2006, Estimating chlorophyll a concentrations from remote-sensing reflectance in optically shallow waters, Remote Sens. Environ., 101, 13, 10.1016/j.rse.2005.12.002
Chen, 2007, Remotely sensed assessment of water quality levels in the Pearl River Estuary, China, Mar. Pollut. Bull., 54, 1267, 10.1016/j.marpolbul.2007.03.010
Concha, 2016, Retrieval of color producing agents in Case 2 waters using Landsat 8, Remote Sens. Environ., 185, 95, 10.1016/j.rse.2016.03.018
Dall'Olmo, 2003, Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters, Geophys. Res. Lett., 30, 1938, 10.1029/2003GL018065
Darecki, 2003, Optical characteristics of two contrasting Case 2 waters and their influence on remote sensing algorithms, Cont. Shelf Res., 23, 237, 10.1016/S0278-4343(02)00222-4
Dierssen, 2006, Red and black tides: quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments, Limnol. Oceanngy., 51, 2646, 10.4319/lo.2006.51.6.2646
Duan, 2009, Two-decade reconstruction of algal blooms in China’s Lake Taihu, Environ. Sci. Technol., 43, 3522, 10.1021/es8031852
Feng, 2005, Modeling spectral reflectance of optically complex waters using bio-optical measurements from Tokyo Bay, Remote Sens. Environ., 99, 232
Feng, 2019, Monitoring and understanding the water transparency changes of fifty large lakes on the Yangtze Plain based on long-term MODIS observations, Remote Sens. Environ., 221, 675, 10.1016/j.rse.2018.12.007
Ferrari, 1999, A method using chemical oxidation to remove light absorption by phytoplankton pigments, J. Phycol., 35, 1090, 10.1046/j.1529-8817.1999.3551090.x
Fukushima, 1996, Dissolved organic carbon in a eutrophic lake; dynamics, biodegradability and origin, Aquat. Sci., 58, 139, 10.1007/BF00877112
Gersberg, 1986, Role of aquatic plants in wastewater treatment by artificial wetlands, Water Res., 20, 363, 10.1016/0043-1354(86)90085-0
Gilerson, 2010, Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands, Opt. Express, 18, 24109, 10.1364/OE.18.024109
Gitelson, 1993, Quantitative remote sensing methods for real-time monitoring of inland waters quality, Int. J. Remote Sens., 14, 1269, 10.1080/01431169308953956
Gitelson, 2008, A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation, Remote Sens. Environ., 112, 3582, 10.1016/j.rse.2008.04.015
Gohin, 2002, A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters, Int. J. Remote Sens., 23, 1639, 10.1080/01431160110071879
Gons, 1999, Optical teledetection of chlorophyll a in turbid inland waters, Environ. Sci. Technol., 33, 1127, 10.1021/es9809657
Gons, 2002, A chlorophyll-retrieval algorithm for satellite imagery (Medium Resolution Imaging Spectrometer) of inland and coastal waters, J. Plankton Res., 24, 947, 10.1093/plankt/24.9.947
Gordon, 1983, Remote assessment of ocean color for interpretation of satellite visible imagery: a review, 113, 1983, 10.1029/LN004
Gower, 1999, Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS, Int. J. Remote Sens., 20, 1771, 10.1080/014311699212470
Green, 1994, Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters, Limnol. Oceanogr., 39, 1903, 10.4319/lo.1994.39.8.1903
Gurlin, 2011, Remote estimation of chl-a concentration in turbid productive waters-return to a simple two-band NIR-red model?, Remote Sens. Environ., 115, 3479, 10.1016/j.rse.2011.08.011
Hieronymi, 2017, The OLCI Neural Network Swarm (ONNS): a bio-geo-optical algorithm for open ocean and coastal waters, Front. Mar. Sci., 4, 140, 10.3389/fmars.2017.00140
Ho, 2017, Using Landsat to extend the historical record of lacustrine phytoplankton blooms: a Lake Erie case study, Remote Sens. Environ., 191, 273, 10.1016/j.rse.2016.12.013
Hu, 2009, A novel ocean color index to detect floating algae in the global oceans, Remote Sens. Environ., 113, 2118, 10.1016/j.rse.2009.05.012
Hu, 2015, A harmful algal bloom of Karenia brevis in the northeastern Gulf of Mexico as revealed by MODIS and VIIRS: a comparison, Sensors, 15, 2873, 10.3390/s150202873
Huang, 2003, The characteristics of nutrients and eutrophication in the Pearl River Estuary, China, Mar. Pollut. Bull., 47, 30, 10.1016/S0025-326X(02)00474-5
Huang, 2014, Assessment of water constituents in highly turbid productive water by optimization bio-optical retrieval model after optical classification, J. Hydrol., 519, 1572, 10.1016/j.jhydrol.2014.09.007
Jackson, 2017, An improved optical classification scheme for the Ocean Colour Essential Climate Variable and its applications, Remote Sens. Environ., 203, 152, 10.1016/j.rse.2017.03.036
Jiang, 2015, Remote sensing of particulate organic carbon dynamics in a eutrophic lake (Taihu Lake, China), Sci. Total Environ., 532, 245, 10.1016/j.scitotenv.2015.05.120
Jiang, 2019, An absorption-specific approach to examining dynamics of particulate organic carbon from VIIRS observations in inland and coastal waters, Remote Sens. Environ., 224, 29, 10.1016/j.rse.2019.01.032
Kajiyama, 2018, Algorithms merging for the determination of chlorophyll-a concentration in the Black Sea, IEEE Geosci. Remote S., 16, 677, 10.1109/LGRS.2018.2883539
Koponen, 2007, A case study of airborne and satellite remote sensing of a spring bloom event in the Gulf of Finland, Cont. Shelf Res., 27, 228, 10.1016/j.csr.2006.10.006
Le, 2009, Specific absorption coefficient and the phytoplankton package effect in Lake Taihu, China, Hydrobiologia, 619, 27, 10.1007/s10750-008-9579-6
Le, 2009, A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: the case of Taihu Lake, China, Remote Sens. Environ., 113, 1175, 10.1016/j.rse.2009.02.005
Le, 2011, Remote estimation of chlorophyll a in optically complex waters based on optical classification, Remote Sens. Environ., 115, 725, 10.1016/j.rse.2010.10.014
Le, 2013, Evaluation of chlorophyll-a remote sensing algorithms for an optically complex estuary, Remote Sens. Environ., 129, 75, 10.1016/j.rse.2012.11.001
Lee, 2002, Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters, Appl. Opt., 41, 5755, 10.1364/AO.41.005755
Lee, 2016, On the modeling of hyperspectral remote-sensing reflectance of high-sediment-load waters in the visible to shortwave-infrared domain, Appl. Opt., 55, 1738, 10.1364/AO.55.001738
Li, 2010, Assessment of soil erosion and sediment yield in Liao watershed, Jiangxi province, China, using USLE, GIS, and RS, J. Earth Sci-China., 21, 941, 10.1007/s12583-010-0147-4
Li, 2013, An inversion model for deriving inherent optical properties of inland waters: establishment, validation and application, Remote Sens. Environ., 135, 150, 10.1016/j.rse.2013.03.031
Lohrenz, 2003, Phytoplankton spectral absorption as influenced by community size structure and pigment composition, J. Plankton Res., 25, 35, 10.1093/plankt/25.1.35
Loiselle, 2009, Optical characterization of chromophoric dissolved organic matter using wavelength distribution of absorption spectral slopes, Limnol. Oceanogr., 54, 590, 10.4319/lo.2009.54.2.0590
Lubac, 2007, Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea, Remote Sens. Environ., 110, 45, 10.1016/j.rse.2007.02.012
Ma, 2011, Approximate bottom contribution to remote sensing reflectance in Taihu Lake, China, J. Great Lakes Res., 37, 18, 10.1016/j.jglr.2010.12.002
Matthews, 2012, An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters, Remote Sens. Environ., 124, 637, 10.1016/j.rse.2012.05.032
McClain, 2009, A decade of satellite ocean color observations, Annu. Rev. Mar. Sci., 1, 19, 10.1146/annurev.marine.010908.163650
Mishra, 2012, Normalized difference chlorophyll index: a novel model for remote estimation of chlorophyll-a concentration in turbid productive waters, Remote Sens. Environ., 117, 394, 10.1016/j.rse.2011.10.016
Mobley, 1999, Estimation of the remote sensing reflectance from above-surface measurements, Appl. Opt., 38, 7442, 10.1364/AO.38.007442
Mobley, 2013
Monolisha, 2018, Optical classification of the coastal waters of the Northern Indian Ocean, Front. Mar. Sci., 5, 87, 10.3389/fmars.2018.00087
Moore, 2001, A fuzzy logic classification scheme for selecting and blending satellite ocean color algorithms, IEEE T. Geosc. Remote, 39, 1764, 10.1109/36.942555
Moore, 2014, An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters, Remote Sens. Environ., 143, 97, 10.1016/j.rse.2013.11.021
Morel, 1977, Analysis of variations in ocean color, Limnol. Oceanogr., 22, 709, 10.4319/lo.1977.22.4.0709
Moses, 2017, Chapter 3 atmospheric correction for inland waters, 69
Mueller, 2003
Murphy, 2011, Using VIIRS to provide data continuity with MODIS, 3, 1212
O’Reilly, 1998, Ocean color chlorophyll algorithms for SeaWiFS, J. Geophys. Res., 103, 24937, 10.1029/98JC02160
O’Reilly, 2000, Ocean color chlorophyll a algorithms for seawifs, oc2, and oc4: version 4, volume 11, 9
Qi, 2015, VIIRS observations of a Karenia brevis bloom in the northeastern Gulf of Mexico in the absence of a fluorescence band, IEEE Geosci. Remote S., 12, 2213, 10.1109/LGRS.2015.2457773
Raqueño, 2003
Raqueño, 2000, Hyperspectral analysis tools for themultiparameter inversion of water quality factors in coastal regions, Imaging Spectrometry VI. SPIE., 4132, 10.1117/12.406601
Röttgers, 2014, Mass-specific light absorption coefficients of natural aquatic particles in the near-infrared spectral region, Limnol. Oceanogr., 59, 1449, 10.4319/lo.2014.59.5.1449
Ruddick, 2000, Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters, Appl. Opt., 39, 897, 10.1364/AO.39.000897
Salgado-Hernanz, 2019, Trends in phytoplankton phenology in the Mediterranean Sea based on ocean-colour remote sensing, Remote Sens. Environ., 221, 50, 10.1016/j.rse.2018.10.036
Sathyendranath, 2004, Discrimination of diatoms from other phytoplankton using ocean colour data, Mar. Ecol-Prog. Ser., 272, 59, 10.3354/meps272059
Saulquin, 2019, Interpolated fields of satellite-derived multi-algorithm chlorophyll-a estimates at global and European scales in the frame of the European Copernicus-Marine Environment Monitoring Service, J. Oper. Res. Oceanogr., 12, 47
Schalles, 1998, Estimation of chlorophyll a from time series measurements of high spectral resolution reflectance in an eutrophic lake, J. Appl. Phycol., 34, 383, 10.1046/j.1529-8817.1998.340383.x
Shen, 2010, Medium resolution imaging spectrometer (MERIS) estimation of chlorophyll-a concentration in the turbid sediment-laden waters of the Changjiang (Yangtze) Estuary, Int. J. Remote Sens., 31, 4635, 10.1080/01431161.2010.485216
Shi, 2018, Deriving total suspended matter concentration from the near-infrared-based inherent optical properties over turbid waters: a case study in Lake Taihu, Remote Sens., 10, 333, 10.3390/rs10020333
Smith, 2016, 6
Smith, 2018, An optimized chlorophyll a switching algorithm for MERIS and OLCI in phytoplankton-dominated waters, Remote Sens. Environ., 215, 217, 10.1016/j.rse.2018.06.002
Spyrakos, 2018, Optical types of inland and coastal waters, Limnol. Oceanogr., 63, 846, 10.1002/lno.10674
Steinmetz, 2011, Atmospheric correction in presence of sun glint: application to MERIS, Opt. Express, 19, 9783, 10.1364/OE.19.009783
Strickland, 1972
Sun, 2012, Specific inherent optical quantities of complex turbid inland waters, from the perspective of water classification, Photoch. Photobio. Sci., 11, 1299, 10.1039/c2pp25061f
Tilstone, 2011, An assessment of chlorophyll-a algorithms available for SeaWiFS in coastal and open areas of the Bay of Bengal and Arabian Sea, Remote Sens. Environ., 115, 2277, 10.1016/j.rse.2011.04.028
Van Der Woerd, 2008, HYDROPT: a fast and flexible method to retrieve chlorophyll-a from multispectral satellite observations of optically complex coastal waters, Remote Sens. Environ., 112, 1795, 10.1016/j.rse.2007.09.001
Wang, 2007, The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing, Opt. Express, 15, 15722, 10.1364/OE.15.015722
Wang, 2013, Impacts of VIIRS SDR performance on ocean color products, J. Geophys. Res.-Atmos., 118, 10347, 10.1002/jgrd.50793
Wang, 2013, Remote sensing of water optical property for China’s inland lake Taihu using the SWIR atmospheric correction with 1640 and 2130 nm bands, IEEE J-STARS, 6, 2505
Wang, 2016, NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors, Opt. Express, 24, 20437, 10.1364/OE.24.020437
Wu, 2013, An approach for developing Landsat-5 TM-based retrieval models of suspended particulate matter concentration with the assistance of MODIS, ISPRS J. Photogramm., 85, 84, 10.1016/j.isprsjprs.2013.08.009
Wu, 2015, Statistical model development and estimation of suspended particulate matter concentrations with Landsat 8 OLI images of Dongting Lake, China, Int. J. Remote Sens., 36, 343, 10.1080/01431161.2014.995273
Xie, 2005, Organ distribution and bioaccumulation of microcystins in freshwater fish at different trophic levels from the eutrophic Lake Chaohu, China, Environ. Toxicol., 20, 293, 10.1002/tox.20120
Xue, 2017, An approach to correct the effects of phytoplankton vertical nonuniform distribution on remote sensing reflectance of cyanobacterial bloom waters, Limnol. Oceanogr-Meth., 15, 302, 10.1002/lom3.10158
Xue, 2019, Optical classification of the remote sensing reflectance and its application in deriving the specific phytoplankton absorption in optically complex lakes, Remote Sens., 11, 184, 10.3390/rs11020184
Yang, 2010, An enhanced three-band index for estimating chlorophyll-a in turbid Case-II waters: case studies of Lake Kasumigaura, Japan and Lake Dianchi, China, IEEE Geosci. Remote S., 7, 655, 10.1109/LGRS.2010.2044364
Yu, 2010, Long-term water temperature variations in Daya Bay, China using satellite and in situ observations, Terr. Atmos. Ocean. Sci., 21, 393, 10.3319/TAO.2009.05.26.01(Oc)
Zhang, 2007, A study of absorption characteristics of chromphoric dissolved organic matter and particles in Lake Taihu, China, Hydrobiologia, 592, 105, 10.1007/s10750-007-0724-4
Zhang, 2011, Temporal and spatial variability of chlorophyll a concentration in Lake Taihu using MODIS time-series data, Hydrobiologia, 661, 235, 10.1007/s10750-010-0528-9
Zhang, 2015, Algorithms and schemes for chlorophyll a estimation by remote sensing and optical classification for turbid Lake Taihu, China, IEEE J-STARS, 8, 350
Zimba, 2006, Remote estimation of chlorophyll concentration in hypereutrophic aquatic systems: model tuning and accuracy optimization, Aquaculture, 256, 272, 10.1016/j.aquaculture.2006.02.038