Remote Sensing Image Fusion Method Based on Nonsubsampled Shearlet Transform and Sparse Representation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Choi, M. (2006). A new intensity–hue–saturation fusion approach to image fusion with a tradeoff parameter. IEEE Transactions on Geoscience and Remote Sensing, 44(6), 1672–1682. doi: 10.1109/TGRS.2006.869923 .
Rahmani, S., Strait, M., Merkurjev, D., Moeller, M., & Wittman, T. (2010). An Adaptive IHS Pan-Sharpening method. IEEE Geoscience and Remote Sensing Letters, 7(4), 746–750. doi: 10.1109/lgrs.2010.2046715 .
Shah, V. P., Younan, N. H., & King, R. L. (2007). An adaptive PCA-based approach to pan-sharpening. In Image and signal processing for remote sensing XIII, Florence, Italy, 2007 (Vol. 6748, p. 674802). International Society for Optics and Photonics. doi: 10.1117/12.736674 .
Aiazzi, B., Baronti, S., Selva, M., & Alparone, L. (2006). Enhanced Gram-Schmidt Spectral Sharpening Based on Multivariate Regression of MS and Pan Data. In 2006 IEEE international sensing symposium geoscience and remote, 31 July 2006–4 Aug 2006 (pp. 3806–3809). doi: 10.1109/IGARSS.2006.975 .
Eshtehari, A., & Ebadi, H. (2008). Image fusion of landsat ETM+ and spot satellite images using IHS, Brovey and PCA. Tehran: Toosi University of Technology.
Alparone, L., Wald, L., Chanussot, J., Thomas, C., Gamba, P., & Bruce, L. M. (2007). Comparison of pansharpening algorithms: Outcome of the 2006 GRS-S data-fusion contest. IEEE Transactions on Geoscience and Remote Sensing, 45(10), 3012–3021. doi: 10.1109/tgrs.2007.904923 .
Garzelli, A., & Nencini, F. (2006). PAN-sharpening of very high resolution multispectral images using genetic algorithms. International Journal of Remote Sensing, 27(15), 3273–3292. doi: 10.1080/01431160600554991 .
Otazu, X., Gonzalez-Audicana, M., Fors, O., & Nunez, J. (2005). Introduction of sensor spectral response into image fusion methods. Application to wavelet-based methods. IEEE Transactions on Geoscience and Remote Sensing, 43(10), 2376–2385. doi: 10.1109/TGRS.2005.856106 .
Zheng, S., Shi, W. Z., Liu, H., & Tian, J. W. (2008). Remote sensing image fusion using multiscale mapped LS-SVM. IEEE Transactions on Geoscience and Remote Sensing, 46(5), 1313–1322. doi: 10.1109/Tgrs.2007.912737 .
Shah, V. P., Younan, N. H., & King, R. (2007). Pan-sharpening via the contourlet transform. In IEEE international geoscience and remote sensing symposium, 23–28 Jul 2007 (pp. 310–313). doi: 10.1109/IGARSS.2007.4422792 .
Choi, M., Kim, R. Y., Nam, M. R., & Kim, H. O. (2005). Fusion of multispectral and panchromatic satellite images using the curvelet transform. IEEE Geoscience and Remote Sensing Letters, 2(2), 136–140. doi: 10.1109/lgrs.2005.845313 .
Li, S., & Yang, B. (2011). A new pan-sharpening method using a compressed sensing technique. IEEE Transactions on Geoscience and Remote Sensing, 49(2), 738–746. doi: 10.1109/tgrs.2010.2067219 .
Fasbender, D., Radoux, J., & Bogaert, P. (2008). Bayesian data fusion for adaptable image pansharpening. IEEE Transactions on Geoscience and Remote Sensing, 46(6), 1847–1857. doi: 10.1109/tgrs.2008.917131 .
Easley, G., Labate, D., & Lim, W.-Q. (2008). Sparse directional image representations using the discrete shearlet transform. Applied and Computational Harmonic Analysis, 25(1), 25–46. doi: 10.1016/j.acha.2007.09.003 .
Elad, M., & Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 15(12), 3736–3745. doi: 10.1109/TIP.2006.881969 .
Choi, M. J., Kim, H. C., Cho, N. I., & Kim, H. O. (2008). An improved intensity–hue–saturation method for IKONOS image fusion. International Journal of Remote Sensing (in pre-print).
Tu, T. M., Huang, P. S., Hung, C. L., & Chang, C. P. (2004). A fast IHS fusion technique with spectral adjustment for IKONOS imagery. IEEE Geoscience and Remote Sensing Letters, 1(4), 309–312. doi: 10.1109/lgrs.2004.834804 .
Guo, K., & Labate, D. (2007). Optimally sparse multidimensional representation using shearlets. SIAM Journal on Mathematical Analysis, 39(1), 298–318. doi: 10.1137/060649781 .
Davenport, M. A., Duarte, M. F., Eldar, Y. C., & Kutyniok, G. (2012). Introduction to compressed sensing. In Y. C. Eldar, & G. Kutyniok (Eds.), Compressed sensing: Theory and applications. Cambridge, UK: Cambridge University Press.
Pati, Y. C., Rezaiifar, R., & Krishnaprasad, P. S. (1993). Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In Proceedings of 27th Asilomar conference on signals, systems and computers 1–3 Nov 1993 (Vol. 1, pp. 40–44), doi: 10.1109/ACSSC.1993.342465 .
Chen, S. S., Donoho, D. L., & Saunders, M. A. (1998). atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 20(1), 33–61. doi: 10.1137/s1064827596304010 .
Starck, J. L., Elad, M., & Donoho, D. L. (2005). Image decomposition via the combination of sparse representations and a variational approach. IEEE Transactions on Image Processing, 14(10), 1570–1582. doi: 10.1109/TIP.2005.852206 .
Rubinstein, R., Bruckstein, A. M., & Elad, M. (2010). Dictionaries for sparse representation modeling. Proceedings of the IEEE, 98(6), 1045–1057. doi: 10.1109/jproc.2010.2040551 .
Engan, K., Aase, S. O., & Hakon Husoy, J. (1999). Method of optimal directions for frame design. In IEEE international conference on acoustics, speech, and signal processing 1999 (Vol. 5, pp. 2443–2446). doi: 10.1109/ICASSP.1999.760624 .
Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11), 4311–4322. doi: 10.1109/tsp.2006.881199 .
Wald, L., Ranchin, T., & Mangolini, M. (1997). Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images. Photogrammetric Engineering and Remote Sensing, 63(6), 691–699.
Khan, M. M., Alparone, L., & Chanussot, J. (2009). Pansharpening quality assessment using the modulation transfer functions of instruments. IEEE Transactions on Geoscience and Remote Sensing, 47(11), 3880–3891. doi: 10.1109/tgrs.2009.2029094 .