Sự tái cấu trúc của lớp lamina hạt nhân và khung nucleoskeleton là cần thiết cho sự phân hóa cơ xương in vitro

Journal of Cell Science - Tập 118 Số 2 - Trang 409-420 - 2005
Ewa Markiewicz1, Maria H. Ledran1, Christopher J. Hutchison1
1Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, University of Durham, South Road, Durham, DH1 4EB, UK.

Tóm tắt

Sự thay đổi trong biểu hiện và phân bố của các lamin hạt nhân đã được nghiên cứu trong quá trình phân hóa tế bào cơ C2C12. Biểu hiện của hầu hết các lamin không thay đổi trong quá trình myogenesis. Ngược lại, biểu hiện của lamin-B2 tăng lên trong khi biểu hiện của LAP2α giảm đi gấp hai lần. Những thay đổi này có tương quan với khả năng hòa tan giảm và sự phân bố lại của các lamin loại A. Khi tế bào cơ C2C12 được chuyển gen với một đột biến lamin-A gây ra bệnh loạn dưỡng cơ di truyền trội tự động Emery-Dreifuss (AD-EDMD), protein đột biến tích tụ trong chất nhân và có tác động chiếm ưu thế lên các lamin nội sinh. Các tế bào cơ được chuyển gen với lamin kiểu hoang dã vẫn phân hóa, mặc dù chậm hơn, trong khi các tế bào cơ được chuyển gen với lamin đột biến không thể phân hóa. Sự phân hóa tế bào cơ yêu cầu quá trình khử phosphoryl hóa protein retinoblastoma Rb. Trong quá trình myogenesis, Rb đã được khử phosphoryl hóa một cách nhanh chóng và dần dần. Rb ít phosphoryl hóa tạo thành các phức hợp với LAP2α trong các tế bào cơ đang tăng sinh và các tế bào cơ sau phân bào. Trong các tế bào cơ được chuyển gen với các lamin đột biến, phức hợp này bị gián đoạn. Những dữ liệu này cho thấy rằng việc tái cấu trúc của khung nucleoskeleton là cần thiết cho sự phân hóa cơ xương và cho việc điều chỉnh đúng các con đường Rb.

Từ khóa


Tài liệu tham khảo

Bergstrom, D. A., Penn, B. H., Strand A., Perry, R. L., Rudnicki, M. A. and Tapscott, S. J. (2002). Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression. Mol. Cell.9, 587-600.

Biamonti, G., Giacca, M., Perini, G., Contreas, G., Zentilin, L., Weignardt, F., Guerra, M., Della Valle, G., Saccone, S. and Riva, S. (1992). The gene for a novel human lamin maps to a highly transcribed locus of chromosome 19 which replicates at the onset of S-phase. Mol. Cell. Biol.12, 3499-3506.

Bonne, G., di Barletta, M. R., Varnous, S., Becane, H. M., Hammouda, E. H., Merlini, L., Muntoni, F., Greenberg, C. R., Gary, F., Urtizberea, J. A. et al. (1999). Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat. Genet.21, 285-288.

Brodsky, G. L., Muntoni, F., Miocic, S., Sinagra, G., Sewry, C. and Mestroni, L. (2000). Lamin A/C gene mutation associated with dilated cardiomyopathy with variable skeletal muscle involvement. Circulation101, 473-476.

Burke, B. and Stewart, C. L. (2002). Life at the edge: the nuclear envelope and human disease. Nat. Rev. Mol. Cell Biol.3, 575-585.

Cenciarelli, C., de Santa, F., Puri, P. L., Mattei, E., Ricci, L., Bucci, F., Felsani, A. and Caruso, M. (1999). Critical role played by cyclin D3 in the MyoD-mediated arrest of cell cycle during myoblast differentiation. Mol. Cell. Biol.19, 5203-5217.

Cohen, M., Lee, K. K., Wilson, K. L. and Gruenbaum, Y. (2001). Transcriptional repression, apoptosis, human disease and the functional evolution of the nuclear lamina. Trends Biochem. Sci.26, 41-48.

Chen, L., Lee, L., Kudlow, B. A., Dos Santos, H. G., Sletvold, O., Shafeghati, Y., Botha, E. G., Garg, A., Hanson, N. B., Martin, G. M. et al. (2003). LMNA mutations in atypical Werner's syndrome. Lancet362, 440-445.

De Sandre-Giovannoli, A., Bernard, R., Cau, P., Navarro, C., Amiel, J., Boccaccio, I., Lyonnet, S., Stewart, C. L., Munnich, A., le Merrer, M. et al. (2003). Lamin A truncation in Hutchinson-Gilford progeria. Science300, 2055-2059.

Dechat, T., Gotzmann, J., Stockinger, A., Harris, C. A., Talle, M. A., Siekierka, J. J. and Foisner, R. (1998). Detergent-salt resistance of LAP2alpha in interphase nuclei and phosphorylation-dependent association with chromosomes early in nuclear assembly implies functions in nuclear structure dynamics. EMBO J.17, 4887-4902.

Dechat, T., Korbei, B., Vaughan, O. A., Vicek, S., Hutchison, C. J. and Foisner, R. (2000). Intranuclear lamina-associated polypeptide 2α binds A-type lamins. J. Cell Sci.113, 3473-3484.

Dreuillet, C., Tillit, J., Kress, M. and Ernoult-Lange, M. (2002). In vivo and in vitro interaction between human transcription factor MOK2 and nuclear lamin A/C. Nucleic Acids Res.30, 4634-4642.

Dyer, J. A., Kill, I. R., Pugh, G., Quinlan, R. A., Lane, E. B. and Hutchison, C. J. (1997). Cell cycle changes in A-type lamin associations detected in human dermal fibroblasts using monoclonal antibodies. Chromosome Res.5, 383-394.

Dyer, J. A., Lane, E. B. and Hutchison, C. J. (1999). Investigations of the pathway of incorporation and function of lamin A in the nuclear lamina. Microsc. Res. Tech.45, 1-12.

Eriksson, M., Brown, W. T., Gordon, L. B., Glynn, M. W., Singer, J., Scott, L., Erdos, M. R., Robbins, C. M., Moses, T. Y., Berglund, P. et al. (2003). Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature423, 293-498.

Fatkin, D., MacRae, C., Sasaki, T., Wolff, M. R., Porcu, M., Frenneaux, M., Atherton, J., Vidaillet, H. J., Jr, Spudich, S., de Girolami, U. et al. (1999). Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. New Engl. J. Med.341, 1715-1724.

Favreau, C., Higuet, D., Courvalin, J. C. and Buendia, B. (2004). Expression of a mutant lamin A that causes Emery-Dreifuss muscular dystrophy inhibits in vitro differentiation of C2C12 myoblasts. Mol. Cell. Biol.24, 1481-1492.

Fidzianska, A. and Hausmanowa-Petrusewicz, I. (2003). Architectural abnormalities in muscle nuclei. Ultrastructural differences between X-linked and autosomal dominant forms of EDMD. J. Neurol. Sci.210, 47-51.

Fisher, D., Chaudhary, N. and Blobel, G. (1986). cDNA sequencing of nuclear lamins A and C reveals primary and secondary structure homology to intermediate filament proteins. Proc. Natl. Acad. Sci. USA83, 6450-6454.

Furukawa, K. and Hotta, Y. (1993). cDNA cloning of a germ cell specific lamin B3 from mouse spermatocytes and analysis of its function by ectopic expression in somatic cells. EMBO J.12, 97-106.

Furukawa, K., Inagaki, L. and Hotta, Y. (1994). Identification and cloning of an mRNA species encoding a germ-line specific A-type lamin in mice. Exp. Cell Res.212, 426-430.

Harborth, J., Elbashir, S. M., Bechert, K., Tuschl, T. and Weber, K. (2001). Identification of essential genes in cultured mammalian cells using small interfering RNAs. J. Cell Sci.114, 4557-4565.

Hozak, P., Sasseville, A. M., Raymond, Y. and Cook, P. R. (1999). Lamin proteins form an internal nucleoskeleton as well as a peripheral lamina in human cells. J. Cell Sci.108, 635-644.

Hutchison, C. J. (2002). Lamins: building blocks or regulators of gene expression? Nat. Rev. Mol. Cell Biol.3, 848-858.

Hutchison, C. J. Alvarez-Reyes, M. and Vaughan, O. A. (2001). Lamins in disease: why do ubiquitously expressed nuclear envelope proteins give rise to tissue specific disease phenotypes? J. Cell Sci.114, 9-19.

Jackson, D. A. (2004). Regulating gene expression in mammalian cells: how nuclear architecture influences mRNA synthesis and export to the cytoplasm. In The Nuclear Envelope Vol. 56 (ed. D. E. Evans, C. J. Hutchison and J. A. Bryant), pp. 135-156. SEB Symposium Series; Bios Scientific Publishers, Tayler and Francis group.

Jagatheesan, G., Thanumalayan, S., Muralikrishna, B., Rangaraj, N., Karande, A. A. and Parnaik, V. K. (1999). Co-localization of intranuclear lamin foci with RNA splicing factors. J. Cell Sci.112, 4651-4661.

Laemli, U. K. (1970). Cleavage of structural proteins during assembly of the head of Bacteriophage T4. Nature227, 680-685.

Lloyd, D. J., Trembath, R. C. and Shackleton, S. (2002). A novel interaction between lamin A and SREBP1: implications for partial lipodystrophy and other laminopathies. Hum. Mol. Genet.11, 769-777.

Lourim, D. and Lin, J. J. (1992). Expression of wild-type and nuclear localization-deficient human laminin A in chick myogenic cells. J. Cell Sci.103, 863-874.

Machiels, B. M., Zorenc, A. H., Endert, J. M., Kuijpers, H. J., van Eys, G. J., Ramaekers, F. C. and Broers, J. V. L. (1996). An alternative splicing product of the lamin A/C gene lacks exon 10. J. Biol. Chem.271, 9249-9253.

Markiewicz, E., Venables, R., Alvarez-Reyes, M., Quinlan, R., Dorobek, M., Hausmanowa-Petrucewicz, I. and Hutchison, C. J. (2002a). Increased solubility of lamins and redistribution of lamin C in X-linked Emery-Dreifuss muscular dystrophy fibroblasts. J. Struct. Biol.140, 241-523.

Markiewicz, E., Dechat, T., Foisner, R., Quinlan, R. A. and Hutchison, C. J. (2002b). Lamin A/C binding protein LAP2alpha is required for nuclear anchorage of retinoblastoma protein. Mol. Biol. Cell13, 4401-4413.

Massari, M. E. and Murre, C. (2000). Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol. Cell. Biol.20, 429-440.

McKinsey, T. A., Zhang, C. L. and Olson, E. N. (2002). Signalling chromatin to make muscle. Curr. Opin. Cell Biol.14, 763-772.

Megeney, L. A., Kablar, B., Garret, K., Anderson, J. E. and Rudnicki, M. A. (1996). MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev.10, 1173-1183.

Moir, R. D., Spann, T. P., Herrmann, H. and Goldman, R. D. (2000). Disruption of nuclear lamin organization blocks the elongation phase of DNA replication. J. Cell Biol.149, 1179-1191.

Muralikrishna, B., Dhawan, J., Rangaraj, N. and Parnaik, V. K. (2001). Distinct changes in intranuclear lamin A/C organization during myoblast differentiation. J. Cell Sci.114, 4001-4011.

Muchir, A., Bonne, G., van der Kooi, A. J., van Meegen, M., Baas, F., Bolhuis, P. A., de Visser, M. and Schwartz, K. (2000). Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with aventricular conduction disturbances (LGMD1B). Hum. Mol. Genet.9, 1453-1459.

Muchir, A., van Engelen, B. G., Lammens, M., Mislow, J. M., McNally, E., Schwartz, K. and Bonne, G. (2003). Nuclear envelope alterations in fibroblasts from LGMD1B patients carrying nonsense Y259X heterozygous or homozygous mutation in lamin A/C gene. Exp. Cell Res.291, 352-362.

Naya, F. S. and Olson, E. (1999). MEF2: a transcriptional target for signaling pathways controlling skeletal muscle growth and differentiation. Curr. Opin. Cell Biol.11, 683-688.

Newport, J., Wilson, K. L. and Dunphy, W. (1990). A lamin independent pathway for nuclear envelope assembly. J. Cell Biol.111, 2247-2259.

Novitch, B. G., Spicer, D. B., Kim, P. S., Cheung, W. L. and Lassar, A. B. (1999). pRb is required for MEF2-dependent gene expression as well as cell-cycle arrest during skeletal muscle differentiation. Curr. Biol.9, 449-459.

Östlund, C., Bonne, G., Schwartz, K. and Worman, H. J. (2001). Properties of lamin A mutants found in Emery-Dreifuss muscular dystrophy, cardiomyopathy and Dunnigan-type partial lipodystrophy. J. Cell Sci.114, 4435-4445.

Ozaki, T., Saijo, M., Murakami, K., Enomoto, H., Taya, Y. and Sakiyama, S. (1994). Complex formation between lamin A and the retinoblastoma gene product: identification of the domain on lamin A required for its interaction. Oncogene9, 2649-2653.

Pendas, A. M., Zhou, Z., Cadinanos, J., Freije, J. M., Wang, J., Hultenby, K., Astudillo, A., Wernerson, A., Rodriguez, F., Tryggvason, K. et al. (2002). Defective prelamin A processing and muscular dystrophy and adipocyte alterations in Zmpste 24 metalloproteinase-deficient mice. Nat. Genet.31, 94-99.

Puri, P. L., Iezzi, S., Stiegler, P., Chen, T. T., Schiltz, R. L., Muscat, G. E., Giordano, A., Kedes, L., Wang, J. Y. and Sartorelli, V. (2001). Class I histone deacetylases sequentially interact with MyoD and pRb during skeletal myogenesis. Mol. Cell.8, 885-897.

Röber, R.-A., Weber, K. and Osborn, M. (1989). Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: a developmental study. Development105, 365-378.

Rudnicki, M. A., Braun, T., Hinuma, S. and Jaenisch, R. (1992). Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene MYF-5 and results in apparently normal muscle development. Cell71, 383-390.

Sabourin, L. A., Girgis-Gabardo, A., Seale, P., Asakura, A. and Rudnicki, M. A. (1999). Reduced differentiation potential of primary MyoD-/- myogenic cells derived from adult skeletal muscle satellite cells. J. Cell Biol.144, 631-643.

Schirmer, E., Guam, T. and Gerace, L. (2001). Involvement of the lamin rod domain in heterotypic lamin interactions important for nuclear organisation. J. Cell Biol.153, 479-489.

Sullivan, T., Escalante-Alcalde, D., Bhatt, H., Anver, M., Bhat, N., Nagashima, K., Stewart, C. L. and Burke, B. (1999). Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol.147, 913-920.

Spann, T. P., Goldman, A. E., Wang, C., Huang, S. and Goldman, R. D. (2002). Alteration of nuclear lamin organization inhibits RNA polymerase II-dependent transcription. J. Cell Biol.156, 603-608.

Venables, R. S., McLena, S., Luny, D., Moteleb, E., Morley, S., Quinlan, R. A., Lane, E. B. and Hutchison, C. J. (2001). Expression of individual lamins in basal cell carcinomas of the skin. Br. J. Cancer84, 512-519.

Wydner, K. L., McNeil, J. A., Lin, F., Worman, H. J. and Lawrence, J. B. (1996). Chromosomal assignment of human nuclear envelope protein genes LMNA, LMNB1 and LBR by fluorescence in situ hybridization. Genomics32, 474-478.

Zacksenhaus, E., Jiang, Z., Chung, D., Marth, J. D., Phillips, R. A. and Gallie, B. L. (1996). pRb controls proliferation, differentiation, and death of skeletal muscle cells and other lineages during embryogenesis. Genes Dev.10, 3051-3064.