Remarks on the a priori bound for the vorticity of the axisymmetric Navier-Stokes equations

Institute of Mathematics, Czech Academy of Sciences - Tập 67 - Trang 485-507 - 2021
Zujin Zhang1, Chenxuan Tong1
1School of Mathematics and Computer Sciences, Gannan Normal University, Ganzhou, P. R. China

Tóm tắt

We study the axisymmetric Navier-Stokes equations. In 2010, Loftus-Zhang used a refined test function and re-scaling scheme, and showed that $$\left| {{\omega ^r}(x,t)} \right| + \left| {{\omega ^z}(r,t)} \right| \leqslant {C \over {{r^{10}}}},\,\,\,\,\,0 < r \leqslant {1 \over 2}.$$ By employing the dimension reduction technique by Lei-Navas-Zhang, and analyzing ωr, ωz and ωθ/r on different hollow cylinders, we are able to improve it and obtain $$\left| {{\omega ^r}(x,t)} \right| + \left| {{\omega ^z}(r,t)} \right| \leqslant {{C\left| {\ln \,r} \right|} \over {{r^{17/2}}}},\,\,\,\,\,0 < r \leqslant {1 \over 2}.$$

Tài liệu tham khảo

D. Chae, J. Lee: On the regularity of the axisymmetric solutions of the Navier-Stokes equations. Math. Z. 239 (2002), 645–671. H. Chen, D. Fang, T. Zhang: Regularity of 3D axisymmetric Navier-Stokes equations. Discrete Contin. Dyn. Syst. 37 (2017), 1923–1939. Q. Chen, Z. Zhang: Regularity criterion of axisymmetric weak solutions to the 3D Navier-Stokes equations. J. Math. Anal. Appl. 331 (2007), 1384–1395. S. Gala: On the regularity criterion of axisymmetric weak solutions to the 3D Navier-Stokes equations. Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 775–782. T. Gallay, V. Šverák: Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations. Confluentes Math. 7 (2015), 67–92. T. Y. Hou, C. Li: Global well-posedness of the viscous Boussinesq equations. Discrete Contin. Dyn. Syst. 12 (2005), 1–12. O. Kreml, M. Pokorný: A regularity criterion for the angular velocity component in axisymmetric Navier-Stokes equations. Electron J. Differ. Equ. 2007 (2007), Article ID 08, 10 pages. A. Kubica, M. Pokorný, W. Zajączkowski: Remarks on regularity criteria for axially symmetric weak solutions to the Navier-Stokes equations. Math. Methods Appl. Sci. 35 (2012), 360–371. O. A. Ladyzhenskaya: Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry. Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 7 (1968), 155–177. (In Russian.) Z. Lei, E. A. Navas, Q. S. Zhang: A priori bound on the velocity in axially symmetric Navier-Stokes equations. Commun. Math. Phys. 341 (2016), 289–307. Z. Lei, Q. S. Zhang: A Liouville theorem for the axially-symmetric Navier-Stokes equations. J. Funct. Anal. 261 (2011), 2323–2345. Z. Lei, Q. S. Zhang: Criticality of the axially symmetric Navier-Stokes equations. Pac. J. Math. 289 (2017), 169–187. S. Leonardi, J. Málek, J. Nečas, M. Pokorný: On axially symmetric flows in ℝ3. Z. Anal. Anwend. 18 (1999), 639–649. J. B. Loftus, Q. S. Zhang: A priori bounds for the vorticity of axially symmetric solutions to the Navier-Stokes equations. Adv. Differ. Equ. 15 (2010), 531–560. J. Neustupa, M. Pokorný: Axisymmetric flow of Navier-Stokes fluid in the whole space with non-zero angular velocity component. Math. Bohem. 126 (2001), 469–481. M. Pokorný: A regularity criterion for the angular velocity component in the case of axisymmetric Navier-Stokes equations. Elliptic and Parabolic Problems. World Scientific, Singapore, 2002, pp. 233–242. J. Rencławowicz, W. M. Zajączkowski: On some regularity criteria for axisymmetric Navier-Stokes equations. J. Math. Fluid Mech. 21 (2019), Article ID 51, 14 pages. M. R. Uhkovskii, V. I. Iudovich: Axially symmetric flows of ideal and viscous fluids filling the whole space. J. Appl. Math. Mech. 32 (1968), 52–62. D. Wei: Regularity criterion to the axially symmetric Navier-Stokes equations. J. Math. Anal. Appl. 435 (2016), 402–413. P. Zhang, T. Zhang: Global axisymmetric solutions to three-dimensional Navier-Stokes system. Int. Math. Res. Not. 2014 (2014), 610–642. Z. Zhang: Remarks on regularity criteria for the Navier-Stokes equations with axisymmetric data. Ann. Pol. Math. 117 (2016), 181–196. Z. Zhang: On weighted regularity criteria for the axisymmetric Navier-Stokes equations. Appl. Math. Comput. 296 (2017), 18–22. Z. Zhang: A pointwise regularity criterion for axisymmetric Navier-Stokes system. J. Math. Anal. Appl. 461 (2018), 1–6. Z. Zhang: Several new regularity criteria for the axisymmetric Navier-Stokes equations with swirl. Comput. Math. Appl. 76 (2018), 1420–1426. Z. Zhang: New a priori estimates for the axisymmetric Navier-Stokes system. Appl. Math. Lett. 92 (2019), 139–143. Z. Zhang, X. Ouyang, X. Yang: Refined a priori estimates for the axisymmetric Navier-Stokes equations. J. Appl. Anal. Comput. 7 (2017), 554–558.