Remarks on Jones Slopes and Surfaces of Knots
Tóm tắt
We show that the strong slope conjecture implies that the degrees of the colored Jones knot polynomials detect the figure 8 knot. Furthermore, we propose a characterization of alternating knots in terms of the Jones period and the degree span of the colored Jones polynomial
Tài liệu tham khảo
Baker, K.L., Motegi, K., Takata, T.: The strong slope conjecture for graph knots. arXiv:1809.01039 (2018)
Baker, K.L., Motegi, K., Takata, T.: The strong slope conjecture for twisted generalized Whitehead doubles. Quantum Topol. 11(3), 545–608 (2020)
Dasbach, O.T., Futer, D., Kalfagianni, E., Lin, X.S., Stoltzfus, lN.W.: The Jones polynomial and graphs on surfaces. J. Combin. Theory Ser. B 98(2), 384–399 (2008)
Futer, D., Kalfagianni, E., Purcell, J.S.: Slopes and colored Jones polynomials of adequate knots. Proc. Am. Math. Soc. 139, 1889–1896 (2011)
Futer, D., Kalfagianni, E., Purcell, J.S.: Guts of Surfaces and the Colored Jones Polynomial Lecture Notes in Mathematics, vol. 2069. Springer, Heidelberg (2013)
Futer, D., Kalfagianni, E., Purcell, J.S.: Jones polynomials, volume and essential knot surfaces: a survey. In: Knots in Poland. III. Part 1. Banach Center Publ., vol. 100, 51–77. Polish Acad. Sci. Inst. Math., Warsaw (2014)
Garoufalidis, S.: The degree of a q-holonomic sequence is a quadratic quasi-polynomial. Electron. J. Combin. 18(2), paper 4, 23 (2011)
Garoufalidis, S.: The Jones slopes of a knot. Quantum Topol. 2(1), 43–69 (2011)
Garoufalidis, S., Lee, C.R.S., van der Veen, R.: The slope conjecture for Montesinos knots. Internat. J. Math. 31(7), 2050056, 66 (2020)
Gordon, C.McA: Boundary slopes of punctured tori in 3-manifolds. Trans. Am. Math. Soc. 350(5), 1713–1790 (1998)
Gordon, C.McA., Luecke, J.: Knots are determined by their complements. Bull. Am. Math. Soc. (N.S.) 20(1), 83–87 (1989)
Hatcher, A.E.: On the boundary curves of incompressible surfaces. Pacific J. Math. 99(2), 373–377 (1982)
Howie, J.A.: Coiled surfaces and the strong slope conjecture. Preprint
Howie, J.A.: A characterisation of alternating knot exteriors. Geom. Topol. 21(4), 2353–2371 (2017)
Kalfagianni, E.: A Jones slopes characterization of adequate knots. Indiana Univ. Math. J. 67(1), 205–219 (2018)
Kalfagianni, E.: The strong slope conjecture and torus knots. J. Math. Soc. Japan 72(1), 73–79 (2020)
Kalfagianni, E., Lee, C.R.S.: Normal and Jones surfaces of knots. J. Knot Theory Ramifications 27(6), 1850039, 15 (2018)
Kalfagianni, E., Tran, A.T.: Knot cabling and degrees of colored Jones polynomials. New York J. Math. 21, 905–941 (2015)
Lackenby, M., Meyerhoff, R.: The maximal number of exceptional Dehn surgeries. Invent. Math. 191(2), 341–382 (2013)
Lee, C.R.S.: Jones slopes and coarse volume for near-alternating links. Comm. Anal. Geom. (To appear)
Lee, C.R.S., van der Veen, R.: Cancellations in the degree of the colored Jones polynomial. arXiv:2006.01303
Lee, C.R.S., van der Veen, R.: Slopes for pretzel knots. New York J. Math. 22, 1339–1364 (2016)
Leng, X., Yang, Z., Liu, X.: The slope conjectures for 3-string Montesinos knots. New York J. Math. 25, 45–70 (2019)
Lickorish, W.B.R.: An Introduction to Knot Theory Graduate Texts in Mathematics, vol. 175. Springer, New York (1997)
Lickorish, W.B.R., Thistlethwaite, M.B.: Some links with nontrivial polynomials and their crossing-numbers. Comment. Math. Helv. 63(4), 527–539 (1988)
Motegi, K., Takata, T.: The slope conjecture for graph knots. Math. Proc. Cambridge Philos. Soc. 162(3), 383–392 (2017)
Ozawa, M.: Essential state surfaces for knots and links. J. Aust. Math. Soc. 91(3), 391–404 (2011)