Những nhận xét về các bất đẳng thức của Chen cho các tiểu đa tạp trong một đa tạp Riemann có độ cong gần như hằng số

Vietnam Journal of Mathematics - Tập 43 - Trang 557-569 - 2014
Pan Zhang1
1School of Mathematics and Computer Science, Anhui Normal University, Wuhu, People’s Republic of China

Tóm tắt

Trong bài báo này, chúng tôi chứng minh các bất đẳng thức tổng quát của Chen và các bất đẳng thức Chen–Ricci cho các tiểu đa tạp của một đa tạp Riemann có độ cong gần như hằng số. Chúng tôi cũng thiết lập các bất đẳng thức giữa hàm biến hình và độ cong trung bình bình phương cho các tiểu đa tạp sản phẩm biến hình trong một đa tạp Riemann có độ cong gần như hằng số.

Từ khóa


Tài liệu tham khảo

Arslan, K., Ezentas, R., Mihai, I., Özgür, C.: Certain inequalities for submanifolds in (κ, μ)-contact space forms. Bull. Aust.Math. Soc. 64, 201–212 (2001) Bishop, R.L., O’Neill, B.: Manifolds of negative curvature. Trans. Amer. Math. Soc. 145, 1–49 (1969) Chen, B.-Y.: Mean curvature and shape operator of isometric immersions in real space forms. Glasg. Math. J. 38, 87–97 (1996) Chen, B.-Y., Dillen, F., Verstraelen, L., Vrancken, L.: Totally real submanifolds of C P n satisfying a basic equality. Arch. Math. 63, 553–564 (1994) Chen, B.-Y.: δ-Invariants, inequalities of submanifolds and their applications. arXiv preprint arXiv: 1307.1877 (2013) Chen, B.-Y.: A tour through δ-invariants: from Nash’s embedding theorem to ideal immersions, best ways of living and beyond. arXiv preprint arXiv: 1307.1030 (2013) Chen, B.-Y.: Some pinching and classification theorems for minimal submanifolds. Arch. Math. 60, 568–578 (1993) Chen, B.-Y.: A Riemannian invariant and its application to submanifolds theory. Result Math. 27, 17–26 (1995) Chen, B.-Y.: Ideal Lagrangian immersions in complex space forms. Math. Proc. Camb. Philos. Soc. 128, 511–533 (2000) Chen, B.-Y., Dillen, F.: Optimal general inequalities for Lagrangian submanifolds in complex space forms. J. Math. Anal. Appl. 379, 229–239 (2011) Chen, B.-Y.: Pseudo-Riemannian Geometry, δ-Invariants and Application. World Scientic, New Jersey (2011) Chen, B.-Y., Prieto-Martín, A.: Classification of Lagrangian submanifolds in complex space forms satisfying a basic equality involving δ(2,2). Differ. Geom. Appl. 30, 107–123 (2012) Chen, B.-Y., Yano, K.: Hypersurfaces of a conformally flat space. Tensor (N.S.) 26, 318–322 (1972) Chen, B.-Y.: Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions. Glasg. Math. J. 41, 31–41 (1999) Chen, B.-Y.: On isometric minimal immersions from warped products into real space forms. Proc. Edinb. Math. Soc. 45, 579–587 (2002) Chen, B.-Y.: Non-immersion theorems for warped products in complex hyperbolic spaces. Proc. Japan Acad. Ser. A, Math. Sci. 78, 96–100 (2002) Chen, B.-Y.: A general optimal inequality for warped products in complex projective spaces and its applications. Proc. Japan Acad. Ser. A, Math. Sci. 79, 89–94 (2003) Chen, B.-Y., Munteanu, M.I.: Geometry of PR-warped products in p a r a−Kahler manifolds. Taiwan. J. Math. 16, 1293–1327 (2012) Chen, B.-Y: What can we do with Nash’s embedding theorem. Soochow J. Math 30, 303–338 (2004) Chern, S.S.: Minimal Submanifolds in a Riemannian Manifold. University of Kansas Press, Lawrence (1968) De, U.C., Gazi, A.K.: On the existence of nearly quasi-Einstein manifolds. Novi Sad J. Math. 39, 111–117 (2009) De, U.C., Gazi, A.K.: On nearly quasi-Einstein manifolds. Novi Sad J. Math. 38, 115–121 (2008) Gülbahar, M., Kılıç, E., Keleş, S.: Some inequalities on screen homothetic lightlike hypersurfaces of a Lorentzian manifold. Taiwan. J. Math. 17, 2083–2100 (2013) Hasegawa, I., Mihai, I.: Contact CR-warped product submanifolds in Sasakian manifolds. Geom. Dedicata 102, 143–150 (2003) Mihai, A., Özgür, C.: Chen inequalities for submanifolds of real space forms with a semi-symmetric metric connection. Taiwan. J. Math. 4, 1465–1477 (2010) Mihai, A.: Warped product submanifolds in generalized complex space forms. Acta Math. Acad. Paedagog. Nyhzi. (N.S.) 21, 79–87 (2005) Mihai, I.: Ricci curvature of submanifolds in Sasakian space forms. J. Aust. Math. Soc. 72, 247–256 (2002) Nash, J.F.: The imbedding problem for Riemannian manifolds. Ann. Math. 63, 20–63 (1956) Oprea, T.: Chen’s inequality in the Lagrangian case. Colloq. Math. 108, 163–169 (2007) Özgür, C.: B.Y. Chen inequalities for submanifolds of a Riemannian manifold of a quasi-constant curvature. Turk. J. Math. 35, 501–509 (2011) Özgür, C., Arslan, K.: On some class of hypersurfaces in \(\mathbb {E}^{n}\) satisfying Chen’s equality. Turk. J. Math. 26, 283–293 (2002) Özgür, C., De, A.: Chen inequalities for submanifolds of a Riemannian manifold of nearly quasi-constant curvature. Publ. Math. Debrecen 82, 439–450 (2013) Tripathi, M.M.: Improved Chen-Ricci inequality for curvature-like tensors and its applications. Differ. Geom. Appl. 29, 685–698 (2011) Vǐlcu, G.E.: B.-Y. Chen inequalities for slant submanifolds in quaternionic space forms. Turk. J. Math. 34, 115–128 (2010)