Remarkable electronic and NLO properties of bimetallic superalkali clusters: a DFT study

Journal of Nanostructure in Chemistry - Tập 12 - Trang 529-545 - 2021
Atazaz Ahsin1, Khurshid Ayub1
1Department of Chemistry, COMSATS University Islamabad, Abbottabad, Pakistan

Tóm tắt

Excess electron compounds possess remarkable first hyperpolarizabilities (βo) which make them potential candidates for next-generation nonlinear optical materials. Herein, we studied the geometric, thermodynamic, electronic, and nonlinear optical properties of bimetallic superalkali clusters. These clusters are thermodynamically stable with their binding energy per atom ranging from 1.12 to 47.84 kcal mol−1. The electronic stability and superalkali nature are characterized through calculated ionization energies (IE). Furthermore, the significantly reduced HOMO–LUMO energy gaps reflect excellent properties of bimetallic clusters. The absorption study via TD-DFT shows that these clusters are transparent in the deep UV region of electromagnetic radiations. These excess electron clusters show remarkable hyperpolarizability (βo) values up to 4.3 × 104 au. The excess electron causes a significant reduction in excitation energy which results in larger hyperpolarizability values. The obtained first hyperpolarizability is also rationalized by employing the conventional two-level model. The projection of hyperpolarizability on dipole moment (βvec) also agreed with total hyperpolarizability in these clusters which indicated unidirectional charge transfer with dipole moment. Moreover, the studied bimetallic clusters also show larger static second hyperpolarizability (γo) values up to (6.1 × 107 au). We believe that the current study can provide motivation for exploring other excess electron superalkali clusters for NLO applications.

Tài liệu tham khảo

You, J.W., Bongu, S.R., Bao, Q., Panoiu, N.C.: Nonlinear optical properties and applications of 2D materials: theoretical and experimental aspects. Nanophotonics 8, 63–97 (2019) Wang, Y., Pan, S.: Recent development of metal borate halides: crystal chemistry and application in second-order NLO materials. Coord. Chem. Rev. 323, 15–35 (2016) Guo, J., Huang, D., Zhang, Y., Yao, H., Wang, Y., Zhang, F., Wang, R., Ge, Y., Song, Y., Guo, Z.: 2D GeP as a novel broadband nonlinear optical material for ultrafast photonics. Laser Photon. Rev. 13, 1900123 (2019) Wang, G., Baker-Murray, A.A., Blau, W.J.: Saturable absorption in 2D nanomaterials and related photonic devices. Laser Photon. Rev. 13, 1800282 (2019) Zhang, Y., Grady, N.K., Ayala-Orozco, C., Halas, N.J.: Three-dimensional nanostructures as highly efficient generators of second harmonic light. Nano Lett. 11, 5519–5523 (2011) Wu, J., Luo, J., Jen, A.K.-Y.: High-performance organic second-and third-order nonlinear optical materials for ultrafast information processing. J. Mater. Chem. C. 8, 15009–15026 (2020) Böhm, M.C., Schulte, J., Schlögl, R.: Solid state electronic structure of potassium graphite intercalation compounds; the systems KC24 and KC8. Phys. Status Solidi. 196, 131–144 (1996) Mutailipu, M., Zhang, M., Zhang, B., Wang, L., Yang, Z., Zhou, X., Pan, S.: SrB5O7F3 Functionalized with [B5O9F3]6− chromophores: accelerating the rational design of deep-ultraviolet nonlinear optical materials. Angew. Chemie Int. Ed. 57, 6095–6099 (2018) Muhammad, S., Nakano, M., Al-Sehemi, A.G., Kitagawa, Y., Irfan, A., Chaudhry, A.R., Kishi, R., Ito, S., Yoneda, K., Fukuda, K.: Role of a singlet diradical character in carbon nanomaterials: a novel hot spot for efficient nonlinear optical materials. Nanoscale 8, 17998–18020 (2016) Liu, Z., Hua, S., Wu, G.: Extended first hyperpolarizability of quasi-octupolar molecules by halogenated methylation: whether the iodine atom is the best choice. J. Phys. Chem. C. 122, 21548–21556 (2018) Wang, S.-J., Wang, Y.-F., Cai, C.: Multidecker sandwich cluster VnBenn+1 (n = 1, 2, 3, 4) as a polarizable bridge for designing 1D second-order NLO chromophore: metal−π sandwich multilayer structure as a particular charge-transfer axis for constructing multidimensional NLO molecules. J. Phys. Chem. C. 119, 16256–16262 (2015) Durand, R.J., Gauthier, S., Achelle, S., Kahlal, S., Saillard, J.-Y., Barsella, A., Wojcik, L., Le Poul, N., Robin-Le Guen, F.: Incorporation of a platinum center in the pi-conjugated core of push–pull chromophores for nonlinear optics (NLO). Dalt. Trans. 46, 3059–3069 (2017) Gieseking, R.L., Risko, C., Bredas, J.-L.: Distinguishing the effects of bond-length alternation versus bond-order alternation on the nonlinear optical properties of π-conjugated chromophores. J. Phys. Chem. Lett. 6, 2158–2162 (2015) Wang, J.J., Zhou, Z.J., Bai, Y., Liu, Z.B., Li, Y., Wu, D., Chen, W., Li, Z.R., Sun, C.C.: The interaction between superalkalis (M3O, M = Na, K) and a C20F20 cage forming superalkali electride salt molecules with excess electrons inside the C20F20 cage: dramatic superalkali effect on the nonlinear optical property. J. Mater. Chem. 22, 9652–9657 (2012) He, H.M., Li, Y., Sun, W.M., Wang, J.J., Wu, D., Zhong, R.L., Zhou, Z.J., Li, Z.R.: All-metal electride molecules CuAg@Ca7M (M = Be, Mg, and Ca) with multi-excess electrons and all-metal polyanions: Molecular structures and bonding modes as well as large infrared nonlinear optical responses. Dalt. Trans. 45, 2656–2665 (2016) He, H.M., Li, Y., Yang, H., Yu, D., Wu, D., Zhong, R.L., Zhou, Z.J., Li, Z.R.: Effects of the cage number and excess electron number on the second order nonlinear optical response in molecular all-metal electride multicage Chains. J. Phys. Chem. C. 121, 25531–25540 (2017) Zhong, R.L., Xu, H.L., Li, Z.R., Su, Z.M.: Role of excess electrons in nonlinear optical response. J. Phys. Chem. Lett. 6, 612–619 (2015) Kosar, N., Mahmood, T., Ayub, K., Tabassum, S., Arshad, M., Gilani, M.A.: Doping superalkali on Zn12O12 nanocage constitutes a superior approach to fabricate stable and high-performance nonlinear optical materials. Opt. Laser Technol. 12, 105753 (2019) Hou, N., Wu, Y.Y., Wu, H.S., He, H.M.: The important role of superalkalis on the static first hyperpolarizabilities of new electrides: theoretical investigation on superalkali-doped hexamethylenetetramine (HMT). Synth. Met. 232, 39–45 (2017) Ahsan, A., Ayub, K.: Adamanzane based alkaline earthides with excellent nonlinear optical response and ultraviolet transparency. Opt. Laser Technol. 129, 106298 (2020) Sun, W.M., Li, Y., Li, X.H., Wu, D., He, H.M., Li, C.Y., Chen, J.H., Li, Z.R.: Stability and nonlinear optical response of alkalides that contain a completely encapsulated superalkali cluster. Chem. Phys. Chem. 17, 2672 (2016) Zein, S., Ortiz, J.: V: Interpretation of the photoelectron spectra of superalkali species: Li3O and Li3O−. J. Chem. Phys. 135, 164307 (2011) Ullah, F., Kosar, N., Ayub, K., Mahmood, T.: Superalkalis as a source of diffuse excess electrons in newly designed inorganic electrides with remarkable nonlinear response and deep ultraviolet transparency: A DFT study. Appl. Surf. Sci. 483, 1118–1128 (2019) Luo, Z., Castleman, A.W.: Special and general superatoms. Acc. Chem. Res. 47, 2931–2940 (2014) Brito, B.G.A., Hai, G.Q., Cândido, L.: Quantum Monte Carlo simulation for the many-body decomposition of the interaction energy and electron correlation of small superalkali lithium clusters. J. Chem. Phys. 151, 014303 (2019) Sun, W.M., Wu, D.: Recent progress on the design, characterization, and application of superalkalis. Chem. A Eur. J. 25, 9568–9579 (2019) Srivastava, A.K., Misra, N.: Hydrogenated superalkalis and their possible applications. J. Mol. Model. 22, 122 (2016) Zheng, B., Zhou, F., Liu, Y., Wang, Z., Liu, Y., Ding, X.: Halogen bonds and metal bonds involving superalkalies M2 OCN/M2NCO (M = Li, Na) complexes. Struct. Chem. 30, 965–977 (2019) Zhao, T., Wang, Q., Jena, P.: Rational design of super-alkalis and their role in CO2 activation. Nanoscale 9, 4891–4897 (2017) Pan, S., Merino, G., Chattaraj, P.K.: The hydrogen trapping potential of some Li-doped star-like clusters and super-alkali systems. Phys. Chem. Chem. Phys. 14, 10345–10350 (2012) Tong, J., Li, Y., Wu, D., Li, Z.-R., Huang, X.-R.: Ab Initio investigation on a new class of binuclear superalkali cations M2Li2k+1+ (F2Li3+, O2Li5+, N2Li7+, and C2Li9+). J. Phys. Chem. A. 115, 2041–2046 (2011) Srivastava, A.K., Misra, N.: Superbases and superacids form supersalts. Chem. Phys. Lett. 644, 1–4 (2016) Khatua, M., Pan, S., Chattaraj, P.K.: Confinement induced binding of noble gas atoms. J. Chem. Phys. 140, 164306 (2014) Sun, W.-M., Li, X.-H., Wu, D., Li, Y., He, H.-M., Li, Z.-R., Chen, J.-H., Li, C.-Y.: A theoretical study on superalkali-doped nanocages: unique inorganic electrides with high stability, deep-ultraviolet transparency, and a considerable nonlinear optical response. Dalt. Trans. 45, 7500–7509 (2016) Sun, W.M., Fan, L.T., Li, Y., Liu, J.Y., Wu, D., Li, Z.R.: On the potential application of superalkali clusters in designing novel alkalides with large nonlinear optical properties. Inorg. Chem. 53, 6170–6178 (2014) Zhong, R.L., Xu, H.L., Sun, S.L., Qiu, Y.Q., Su, Z.M.: The excess electron in a boron nitride nanotube: pyramidal NBO charge distribution and remarkable first hyperpolarizability. Chem. Eur. J. 18, 11350 (2012) Srivastava, A.K., Misra, N.: Nonlinear optical behavior of LinF (n = 2–5) superalkali clusters. J. Mol. Model. 21, 1–5 (2015) Srivastava, A.K., Misra, N.: M2X (M= Li, Na; X= F, Cl): the smallest superalkali clusters with significant NLO responses and electride characteristics. Mol. Simul. 42, 981–985 (2016) Ahsin, A., Ayub, K.: Oxacarbon superalkali C3X3Y3 (X = O, S and Y = Li, Na, K ) clusters as excess electron compounds for remarkable static and dynamic NLO response. J. Mol. Graph. Model. 106, 107922 (2021) Li, X., Zhang, Y., Lu, J.: Remarkably enhanced first hyperpolarizability and nonlinear refractive index of novel graphdiyne-based materials for promising optoelectronic applications: A first-principles study. Appl. Surf. Sci. 512, 145544 (2020) Srinivasu, K., Ghosh, S.K.: Graphyne and graphdiyne: promising materials for nanoelectronics and energy storage applications. J. Phys. Chem. C. 116, 5951–5956 (2012) Niu, M., Yu, G., Yang, G., Chen, W., Zhao, X., Huang, X.: Doping the alkali atom: an effective strategy to improve the electronic and nonlinear optical properties of the inorganic Al12N12 nanocage. Inorg. Chem. 53, 349–358 (2014) Hou, N., Wu, Y.Y., Liu, J.Y.: Theoretical studies on structures and nonlinear optical properties of alkali doped electrides B12N12–M (M = Li, Na, K). Int. J. Quantum Chem. 116, 1296–1302 (2016) Tong, J., Li, Y., Wu, D., Wu, Z.J.: Theoretical study of substitution effect in superalkali OM3 (M = Li, Na, K). Chem. Phys. Lett. 575, 27–31 (2013) Tong, J., Li, Y., Wu, D., Li, Z.-R., Huang, X.-R.: Low ionization potentials of binuclear superalkali B 2 Li 11. J. Chem. Phys. 131, 164307 (2009) Tong, J., Wu, Z., Li, Y., Wu, D.: Prediction and characterization of novel polynuclear superalkali cations. Dalt. Trans. 42, 577–584 (2013) Vituccio, D.T., Golonzka, O., Herrmann, R.F.W., Rakowsky, S., Ernst, W.E.: Photoionization spectroscopy of small alkali and superalkali clusters. 245, 245–252 (2010) Sun, W.M., Li, X.H., Li, Y., Liu, J.Y., Wu, D., Li, C.Y., Ni, B.L., Li, Z.R.: On the feasibility of designing hyperalkali cations using superalkali clusters as ligands. J. Chem. Phys. 145, 194303 (2016) Jena, P.: Atomic clusters: opportunities in the face of challenges. J. Phys. Chem. Lett. 6, 1549–1552 (2015) Sun, W., Wu, D.: Recent progress on the design, characterization, and application of superalkalis. Chem. Eur. J. 25, 9568–9579 (2019) Eshaya, A.M., Products, F., Castleman, W., Salzano, F.J., Conference, C., Reactor, S., Conditions, A., Browning, W.E., Parker, G.W., Castleman, A.W., Junkins, R.L., Tang, I.N., Tang, I.N., Iodine, P., Tang, I.N., Munkelwitz, R., Tang, I.N., Fission-, G., Behavior, P., Tang, I.N., Tang, I.N., Mackay, R.A., Alkali, I., Coolants, M., Tang, N., Munkelwitz, H.R., Tang, I.N., Horn, F.L., Munkelwitz, H.R., Uranium, M., Castleman, A.W., Reactor, F., Materials, C., Castleman, W., Tang, I.N., Technology, S., Fast, L., Design, R., Tang, I.N., Castleman, W., Tang, I.N.: Publications of A. W. Castleman, Jr.: J. Phys. Chem. A. 118, 8025–8049 (2014). Sun, W.M., Zhang, X.L., Pan, K.Y., Chen, J.H., Wu, D., Li, C.Y., Li, Y., Li, Z.R.: On the possibility of using the jellium model as a guide to design bimetallic superalkali cations. Chem. - A Eur. J. 25, 4358–4366 (2019) Yanai, T., Tew, D.P., Handy, N.C.: A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004) Okuno, K., Shigeta, Y., Kishi, R., Miyasaka, H., Nakano, M.: Tuned CAM-B3LYP functional in the time-dependent density functional theory scheme for excitation energies and properties of diarylethene derivatives. J. Photochem. Photobiol. A Chem. 235, 29–34 (2012) Li, M., Reimers, J.R., Ford, M.J., Kobayashi, R., Amos, R.D.: Accurate prediction of the properties of materials using the CAM-B3LYP density functional. J. Comput. Chem. 42, 1486–1497 (2021) Limacher, P.A., Mikkelsen, K.V., Luthi, H.P.: On the accurate calculation of polarizabilities and second hyperpolarizabilities of polyacetylene oligomer chains using the CAM-B3LYP density functional. J. Chem. Phys. 130, 194114 (2009) Tu, C., Yu, G., Yang, G., Zhao, X., Chen, W., Li, S., Huang, X.: Constructing (super)alkali–boron-heterofullerene dyads: an effective approach to achieve large first hyperpolarizabilities and high stabilities in M3O–BC59 (M = Li, Na and K) and K@n-BC59 (n = 5 and 6). Phys. Chem. Chem. Phys. 16, 1597–1606 (2014) Hou, D., Wu, D., Sun, W.M., Li, Y., Li, Z.R.: Evolution of structure, stability, and nonlinear optical properties of the heterodinuclear CNLin (n = 1–10) clusters. J. Mol. Graph. Model. 59, 92–99 (2015) Du, J., Sun, X., Jiang, G.: Hydrogen storage capability of cagelike Li3B12 clusters. J. Appl. Phys. 127, 054301 (2020) Li, X., Han, Q., Yang, X., Song, R., Song, L.: Modification of alkali metals on silicon-based nanoclusters: an enhanced nonlinear optical response. Chem. Phys. Lett. 659, 93–99 (2016) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT (2016). Reed, A.E., Weinstock, R.B., Weinhold, F.: Natural population analysis. J. Chem. Phys. 83, 735 (1985) Allouche, A.: Gabedit—A graphical user interface for computational chemistry softwares. J. Comput. Chem. 32, 174–182 (2011) Xu, L., Kumar, A., Wong, B.M.: Linear polarizabilities and second hyperpolarizabilities of streptocyanines: results from broken-Symmetry DFT and new CCSD (T) benchmarks. J. Comput. Chem. 39, 2350–2359 (2018) Oviedo, M.B., Ilawe, N.V., Wong, B.M.: Polarizabilities of π-conjugated chains revisited: improved results from broken-symmetry range-separated DFT and new CCSD (T) benchmarks. J. Chem. Theory Comput. 12, 3593–3602 (2016) Ahsin, A., Ayub, K.: Theoretical investigation of superalkali clusters M2OCN and M2NCO (where M= Li, Na, K) as excess electron system with significant static and dynamic nonlinear optical response. Optik 227, 166037 (2020) Krawczyk, P.: DFT study of linear and nonlinear optical properties of donor-acceptor substituted stilbenes, azobenzenes and benzilideneanilines. J. Mol. Model. 16, 659–668 (2010) Yi, J.Y.: Atomic and electronic structures of small GaAs clusters. Chem. Phys. Lett. 325, 269–274 (2000) Hou, N., Wu, D., Li, Y., Li, Z.R.: Lower the electron affinity by halogenation: an unusual strategy to design superalkali cations. J. Am. Chem. Soc. 136, 2921–2927 (2014) Zhuo, L., Liao, W., Yu, Z.: A frontier molecular orbital theory approach to understanding the Mayr equation and to quantifying nucleophilicity and electrophilicity by using HOMO and LUMO energies. Asian J. Org. Chem. 1, 336–345 (2012) Ahsin, A., Ayub, K.: Zintl based superatom P7M2 (M=Li, Na, K & Be, Mg, Ca) clusters with excellent second and third-order nonlinear optical response. Mater. Sci. Semicond. Process. 134, 105986 (2021) Iqbal, J., Ayub, K.: Enhanced electronic and non-linear optical properties of alkali metal (Li, Na, K) doped boron nitride nano-cages. J. Alloys Compd. 687, 976–983 (2016) Shehzadi, K., Ayub, K., Mahmood, T.: Theoretical study on design of novel superalkalis doped graphdiyne: A new donor–acceptor (D-π-A) strategy for enhancing NLO response. Appl. Surf. Sci. 492, 255–263 (2019) Ahsan, A., Ayub, K.: Extremely large nonlinear optical response and excellent electronic stability of true alkaline earthides based on hexaammine complexant. J. Mol. Liq. 297, 111899 (2020) Kosar, N., Gul, S., Ayub, K., Bahader, A., Gilani, M.A., Arshad, M., Mahmood, T.: Significant nonlinear optical response of alkaline earth metals doped beryllium and magnesium oxide nanocages. Mater. Chem. Phys. 242, 122507 (2020) Kosar, N., Shehzadi, K., Ayub, K., Mahmood, T.: Theoretical study on novel superalkali doped graphdiyne complexes: Unique approach for the enhancement of electronic and nonlinear optical response. J. Mol. Graph. Model. 97, 107573 (2020) Ullah, F., Ayub, K., Mahmood, T.: Remarkable second and third order nonlinear optical properties of organometallic C6Li6− M3O electrides. New J. Chem. 44, 9822–9829 (2020) Ahsin, A., Ali, A., Ayub, K.: Alkaline earth metals serving as source of excess electron for alkaline earth metals to impart large second and third order nonlinear optical response; A DFT study. J. Mol. Graph. Model. 101, 107759 (2020) Hou, D., Wu, D., Sun, W.-M., Li, Y., Li, Z.-R.: Evolution of structure, stability, and nonlinear optical properties of the heterodinuclear CNLin (n= 1–10) clusters. J. Mol. Graph. Model. 59, 92–99 (2015) Meyers, F., Marder, S.R., Pierce, B.M., Bredas, J.L.: Electric field modulated nonlinear optical properties of donor-acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (.alpha., .beta., and .gamma.) and Bond Length Alternation. J. Am. Chem. Soc. 116, 10703–10714 (1994) Champagne, B., Kirtman, B.: Evaluation of alternative sum-over-states expressions for the first hyperpolarizability of push-pull π-conjugated systems. J. Chem. Phys. 125, 24101 (2006) Silva, D.L., Fonseca, R.D., Vivas, M.G., Ishow, E., Canuto, S., Mendonca, C.R., De Boni, L.: Experimental and theoretical investigation of the first-order hyperpolarizability of a class of triarylamine derivatives. J. Chem. Phys. 142, 64312 (2015)