Remaining useful life estimation based on nonlinear feature reduction and support vector regression

Engineering Applications of Artificial Intelligence - Tập 26 Số 7 - Trang 1751-1760 - 2013
Tarak Benkedjouh1, Kamal Medjaher2, N. Zerhouni2, S. Rechak3
1EMP, Laboratoire de Mécanique des Structures (LMS), Bordj El Bahri, Algiers, Algeria
2FEMTO-ST Institute, UMR CNRS 6174 - UFC / ENSMM / UTBM Automatic Control and Micro-Mechatronic Systems Department 24, rue Alain Savary, 25000 Besançon, France
3ENSP, Laboratoire de Génie Mécanique, El-Harrach, Algiers, Algeria

Tóm tắt

Từ khóa


Tài liệu tham khảo

AFNOR, 2005. Condition monitoring and diagnostics of machines—prognostics—part 1: general guidelines. NF ISO 13381-1.

Collobert, 2001, SVMTorch, J. Mach. Learn. Res., 1, 143

Demiriz, 2001, Support vector machine regression in chemometrics, Comput. Sci. Stat

Gebraeel, 2004, Residual life predictions from vibration-based degradation signals, IEEE Trans. Ind. Electron., 51, 694, 10.1109/TIE.2004.824875

Haitao, L., Wenbiao, Z., Huairui, 2006. Predicting remaining useful life of an individual unit using proportional hazards model and logistic regression model, in: Reliability and Maintainability Symposium, RAMS’06, pp. 127–132.

Heng, 2009, Rotating machinery prognostics, Mech. Syst. Signal Process., 23, 724, 10.1016/j.ymssp.2008.06.009

Huang, 2007, Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods, Mech. Syst. Signal Process., 21, 193, 10.1016/j.ymssp.2005.11.008

Jackson, 1991

Jardine, 2006, A review on machinery diagnostics and prognostics implementing condition-based maintenance, Mech. Syst. Signal Process., 20, 1483, 10.1016/j.ymssp.2005.09.012

Lebold, M., Thurston, M., 2001. Open standards for condition-based maintenance and prognostic systems, in: Proceedings of the 5th Maintenance and Reliability Conference (MARCON).

Liao, 2009, A novel method for machine performance degradation assessment based on fixed cycle features test, J. Sound Vib., 326, 894, 10.1016/j.jsv.2009.05.005

Lingjun, 2005, Condition evaluation for mechanical equipment by means of support vector data description, Chin. J. Mech. Sci. Technol., 24, 1426

Maaten, L.J.P.V.D., Postma, E.O., Herik, H.J.V.D., 2009. Dimensionality Reduction: A Comparative Review, Tilburg University Technical Report, tiCC-TR 2009-005.

Malhi, 2004, PCA-based feature selection scheme for machine defect classification, IEEE Trans. Instrum. Meas., 53, 1517, 10.1109/TIM.2004.834070

Medjaher, 2012, Remaining useful life estimation of critical components with application to bearings, IEEE Trans. Reliab., 61, 292, 10.1109/TR.2012.2194175

Samko, 2006, Selection of the optimal parameter value for the ISOMAP algorithm, Pattern Recognition Lett., 27, 968, 10.1016/j.patrec.2005.11.017

Schölkopf, 2002

Shao, 2000, Prognosis of remaining bearing life using neural networks, J. Syst. Control Eng. Part I, 214, 217

Tenenbaum, 2000, A global geometric framework for nonlinear dimensionality reduction, Science, 290, 2319, 10.1126/science.290.5500.2319

Tobon-Mejia, 2012, CNC machine tool's wear diagnostic and prognostic by using dynamic Bayesian networks, Mech. Syst. Signal Process., 28, 167, 10.1016/j.ymssp.2011.10.018

Vapnik, 1995

Vapnik, 1997, Support vector method for function approximation, regression estimation, and signal processing, Adv. Neural Inf. Process. Syst., 9, 281

Xi, 2000, Bearing diagnostics based on pattern recognition of statistical parameters, J. Vib. Control, 6, 75

Yan, 2005, Degradation assessment and fault modes classification using logistic regression, J. Manuf. Sci. Eng. Trans. ASME, 127, 912, 10.1115/1.1962019