Reliability of breath by breath spirometry and relative flow-time indices for pulmonary function testing in horses

Springer Science and Business Media LLC - Tập 12 - Trang 1-12 - 2016
K. Burnheim1, K. J. Hughes1, D. L. Evans1, S. L. Raidal1
1School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, Australia

Tóm tắt

Respiratory problems are common in horses, and are often diagnosed as a cause of poor athletic performance. Reliable, accurate and sensitive spirometric tests of airway function in resting horses would assist with the diagnosis of limitations to breathing and facilitate investigations of the effects of various treatments on breathing capacity. The evaluation of respiratory function in horses is challenging and suitable procedures are not widely available to equine practitioners. The determination of relative flow or flow-time measures is used in paediatric patients where compliance may limit conventional pulmonary function techniques. The aim of the current study was to characterise absolute and relative indices of respiratory function in healthy horses during eupnoea (tidal breathing) and carbon dioxide (CO2)-induced hyperpnoea (rebreathing) using a modified mask pneumotrachographic technique well suited to equine practice, and to evaluate the reliability of this technique over three consecutive days. Coefficients of variation, intra-class correlations, mean differences and 95% confidence intervals across all days of testing were established for each parameter. The technique provided absolute measures of respiratory function (respiratory rate, tidal volume, peak inspiratory and expiratory flows, time to peak flow) consistent with previous studies and there was no significant effect of day on any measure of respiratory function. Variability of measurements was decreased during hyperpnea caused by rebreathing CO2, but a number of relative flow-time variables demonstrated good agreement during eupnoeic respiration. The technique was well tolerated by horses and study findings suggest the technique is suitable for evaluation of respiratory function in horses. The use of relative flow-time variables provided reproducible (consistent) results, suggesting the technique may be of use for repeated measures studies in horses during tidal breathing or rebreathing.

Tài liệu tham khảo

Couetil LL, Cardwell JM, Gerber V, Lavoie JP, Leguillette R, Richard EA. Inflammatory airway disease of horses-revised consensus statement. J Vet Int Med. 2016;30(2):503–15. Leclere M, Lavoie-Lamoureux A, Lavoie JP. Heaves, an asthma-like disease of horses. Respirology. 2011;16(7):1027–46. Couetil L, DeNicola DB. Blood gas, plasma lactate, and bronchoalveolar lavage cytology analyses in racehorses with respiratory disease. Equine Vet J. 1999;30:77–82. Couetil LL, Rosenthal FS, DeNicola DB, Chilcoat CD. Clinical signs, evaluation of bronchoalveolar lavage fluid, and assessment of pulmonary function in horses with inflammatory respiratory disease. Am J Vet Res. 2001;62(4):538–46. Wichtel M, Gomez D, Burton S, Wichtel J, Hoffman A. Relationships between equine airway reactivity measured by flowmetric plethysmography and specific indicators of airway inflammation in horses with suspected inflammatory airway disease. Equine Vet J. 2015. doi:10.1111/evj.12482. Derksen FJ, Scott D, Robinson NE, Slocombe RF, Armstrong PJ. Intravenous histamine administration in ponies with recurrent airway obstruction (heaves). Am J Vet Res. 1985;46(4):774–7. Stadler P, Deegen E. Diurnal variation of dynamic compliance, resistance and viscous work of breathing in normal horses and horses with lung disorders. Equine Vet J. 1986;18(3):171–8. Mazan MR, Hoffman AM, Manjerovic N. Comparison of forced oscillation with the conventional method for histamine bronchoprovocation in horses. Am J Vet Res. 1999;60:174–80. Young SS, Tesarowski D. Respiratory mechanics of horses measured by conventional and forced oscillation techniques. J Appl Phys. 1994;76(6):2467–72. Hoffman AM, Kuehn H, Reidelberger K, Kupcinskas R, Miskovic M. Flowmetric comparison of respiratory inductance plethysmography and pneumotachography in horses. J Appl Phys. 2001;91:2767–75. Couetil L, Rosenthal FS, Simpson CM. Forced expiration: a test for airflow obstruction in horses. J Appl Phys. 2000;88(5):1870–9. Cotes JE, Chinn DJ, Miller MR. Basic equipment and measurement techniques. In: Cotes JE, Chinn DJ, Miller MR, editors. Lung Function: Physiology, Measurement and Application in Medicine. 6 edn. Massachusetts,: Blackwell Publishing Ltd; 2006. p. 59-81. Woolcock AJ, Vincent NJ, Macklem PT. Frequency dependence of compliance as a test for obstruction in the small airways. J Clinical Invest. 1969;48(6):1097–106. Pirrone F, Albertini M, Clement MG, Lafortuna CL. Respiratory mechanics in Standardbred horses with sub-clinical inflammatory airway disease and poor athletic performance. Vet J. 2007;173(1):144–50. Mazan MR, Lascola K, Bruns SJ, Hoffman AM. Use of a novel one-nostril mask-spacer device to evaluate airway hyperresponsiveness (AHR) in horses after chronic administration of albuterol. Can J Vet Res. 2014;78(3):214–20. Art T, Desmecht D, Amory H, Lekeux P. Lobeline-induced hyperpnea in equids. Comparison with rebreathing bag and exercise. Zentralbl Veterinarmed A. 1991;38(2):148–52. Herholz C, Tschudi P, Gerber H, Moens Y, Straub R. Ultrasound spirometry in the horse: a preliminary report on the method and the effects of xylazine and lobeline hydrochloride medication. Schweiz Arch Tierheilkd. 1997;139(12):558–63. Kusano K, Curtis RA, Goldman CA, Evans DL. Relative flow-time relationships in single breaths recorded after treadmill exercise in Thoroughbred horses. J Equine Vet Sci. 2007;27(8):362–8. Kӓstner SB, Marlin DJ, Roberts CA, Auer JA, Lekeux P. Comparison of the performance of linear resistance and ultrasonic pneumotachometers at rest and during lobeline-induced hyperpnoea. Res Vet Sci. 2000;68(2):153–9. Lafortuna CE, Saibene F. Mechanics of breathing in horses at rest and during exericse. Journal of Exp Biol. 1991;155(1):245–59. Morris MJ, Lane DJ. Tidal expiratory flow patterns in airflow obstruction. Thorax. 1981;36(2):135–42. Morris MJ, Madgwick RG, Collyer I, Denby F, Lane DJ. Analysis of expiratory tidal flow patterns as a diagnostic tool in airflow obstruction. Euro Resp J. 1998;12(5):1113–7. Stocks J, Dezateux CA, Jackson EA, Hoo AF, Costeloe KL, Wade AM. Analysis of tidal breathing parameters in infancy: how variable is TPTEF:TE? Am J Respir Crit Care Med. 1994;150(5 Pt 1):1347–54. Behan AL, Hauptman JG, Robinson NE. Telemetric analysis of breathing pattern variability in recurrent airway obstruction (heaves)-affected horses. Am J Vet Res. 2013;74(6):925–33. Hoffman AM, Oura TJ, Reidelberger KJ, Mazan MR. Plethysmographic comparison of breathing pattern in heaves (recurrent airway obstruction) versus exprimental bronchoconstriction or hyperpnea in horses. J Vet Int Med. 2007;21:184–92. Evans DL, Kiddell L, Smith CL. Pulmonary funciton measurements immediately after exercise are correlated with neutrophil percentage in tracheal aspirates in horses with poor racing performance. Res Vet Sci. 2011;90:510–5. Gerber V, Straub EA. Endoscopic scoring of mucus quantity and quality: observer and horse variance and relationship to inflammation, mucus viscoelasticity and volume. Equine Vet J. 2004;36(7):576–82. Curtis RA, Kusano K, Evans DL, Lovell NH, Hodgson DR. Reliability of cardiorespiratory measurements with a new ergospirometer during intense treadmill exercise in Thoroughbred horses. Vet J. 2005;169(2):223–31. Hopkins WG. Calculating the reliability intraclass correlation coefficient and its confidence limits. 2009. newstats.org/xICC.xls. Bartko JJ. The intraclass correlation coefficient as a measure of reliability. Psychol Rep. 1966;19:3–11. McGraw KO, Wong SP. Forming inferences about some intraclass correlation coefficients. Psychol Meth. 1996;1:30–46. Koterba AM, Kosch PC, Beech J, Whitlock T. Breathing strategy of the adult horse (Equus caballus) at rest. J Appl Phys. 1988;64(1):337–46. Guthrie AJ, Beadle RE, Bateman RD, White CE. Characterization of normal tidal breathing flow-volume loops for thoroughbred horses. Vet Res Commun. 1995;19(4):331–42. Herholz C, Straub R, Busato A. Ultrasound-spirometry and capnography in horses: analysis of measurement reliability. Vet Res Commun. 2001;25(2):137–47. Herholz C, Straub R, Braendlin C, Imhof A, Lüthi S, Busato A. Measurement of tidal breathing flow-volume loop indices in horses used for different sporting purposes with and without recurrent airway obstruction. Vet Rec. 2003;152:288–92. Pacheco AP, Paradis MR, Hoffman AM, Hermida P, Sanchez A, Nadeau JA, Tufts M, Mazan MR. Age effects on blood gas, spirometry, airway reactivity and bronchoalveolar lavage fluid cytology in clinically healhy horses. J Vet Intern Med. 2014;28:603–8. Ambrisko TD, Schramel JP, Adler A, Kutasi O, Makra Z, Moens YP. Assessment of distribution of ventilation by electrical impedance tomography in standing horses. Physiol Meas. 2016;37(2):175–86. Art T, Lekeux P. Respiratory airflow patterns in ponies at rest and during exercise. Can J Vet Res. 1988;52(3):299–303. Carlsen KH, Lodrup Carlsen KC. Tidal breathing analysis and response to salbutamol in awake young children with and without asthma. Euro Resp J. 1994;7(12):2154–9. Pollmann U, Hörnicke H. Characteristics of respiratory airflow during exercise in horses with reduced performance due to pulmonary emphysema or bronchitis. In: Gillespie JR, Robinson NE, editors. International conference on equine exercise physiology 2. Davis, California: ICEEP Publications; 1987. p. 760–77. Williams EM, Madgwick RG, Morris MJ. Tidal expired airflow patterns in adults with airway obstruction. Euro Resp J. 1998;12(5):1118–23.