Relevance of microbial symbiosis to insect behavior
Tài liệu tham khảo
Buchner, 1965
2003
Zchori-Fein, 2012
de Roode, 2012, Behavioral immunity in insects, Insects, 3, 789, 10.3390/insects3030789
Curtis, 2014, Infection-avoidance behaviour in humans and other animals, Trends Immunol, 35, 457, 10.1016/j.it.2014.08.006
Heil, 2016, Host manipulation by parasites: cases, patterns, and remaining doubts, Front Ecol Evol, 4, 80, 10.3389/fevo.2016.00080
Vale, 2018, The influence of parasites, 273
Weinersmith, 2019, What’s gotten into you?: a review of recent research on parasitoid manipulation of host behavior, Curr Opin Insect Sci, 33, 37, 10.1016/j.cois.2018.11.011
Feldhaar, 2011, Bacterial symbionts as mediators of ecologically important traits of insect hosts, Ecol Entomol, 36, 533, 10.1111/j.1365-2311.2011.01318.x
Ezenwa, 2012, Animal behavior and the microbiome, Science, 338, 198, 10.1126/science.1227412
Wong, 2015, Behavioral microbiomics: a multi-dimensional approach to microbial influence on behavior, Front Microbiol, 6, 1359, 10.3389/fmicb.2015.01359
Douglas, 2009, The microbial dimension in insect nutritional ecology, Funct Ecol, 23, 38, 10.1111/j.1365-2435.2008.01442.x
Moran, 2008, Genomics and evolution of heritable bacterial symbionts, Annu Rev Genet, 42, 165, 10.1146/annurev.genet.41.110306.130119
Shigenobu, 2000, Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS, Nature, 407, 81, 10.1038/35024074
Akman, 2002, Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia, Nat Genet, 32, 402, 10.1038/ng986
Costa, 1996, Mycetocyte inclusion in the oocytes of Bemisia argentifolii (Homoptera: Aleyrodidae), Ann Entomol Soc Am, 89, 694, 10.1093/aesa/89.5.694
Szklarzewicz, 2001, Ultrastructure, distribution, and transmission of endosymbionts in the whitefly Aleurochiton aceris Modeer (Insecta, Hemiptera, Aleyrodinea), Protoplasma, 218, 45, 10.1007/BF01288359
Braendle, 2013, Developmental origin and evolution of bacteriocytes in the aphid-Buchnera symbiosis, PLoS Biol, 1, e21, 10.1371/journal.pbio.0000021
Koga, 2012, Cellular mechanism for selective vertical transmission of an obligate insect symbiont at the bacteriocyte-embryo interface, Proc Natl Acad Sci U S A, 109, E1230, 10.1073/pnas.1119212109
Salem, 2015, An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insects, Proc R Soc B, 282, 10.1098/rspb.2014.2957
Grebennikov, 2010, External exoskeletal cavities in Coleoptera and their possible mycangial functions, Entomol Sci, 13, 81, 10.1111/j.1479-8298.2009.00351.x
Kaltenpoth M, Flórez LV: Versatile and dynamic symbioses between insects and Burkholderia bacteria. Annu Rev Entomol in press. https://doi.org/10.1146/annurev-ento-011019-025025.
Schneider, 1940, Beiträge zur Kenntnis der symbiontischen Einrichtungen der Heteropteren, Z Morphol Ökol Tiere, 36, 565, 10.1007/BF01261001
Müller, 1956, Experimentelle Studien an der Symbiose von Coptosoma scutellatum Geoffr. (Hem. Heteropt.), Z Morphol Ökol Tiere, 44, 459, 10.1007/BF00407170
Fukatsu, 2002, Capsule-transmitted gut symbiotic bacterium of the Japanese common plataspid stinkbug, Megacopta punctatissima, Appl Environ Microbiol, 68, 389, 10.1128/AEM.68.1.389-396.2002
Hosokawa, 2006, Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria, PLoS Biol, 4, e337, 10.1371/journal.pbio.0040337
Hosokawa, 2005, The making of symbiont capsule in the plataspid stinkbug Megacopta punctatissima, FEMS Microbiol Ecol, 54, 471, 10.1016/j.femsec.2005.06.002
Hosokawa, 2007, Obligate symbiont involved in pest status of host insect, Proc R Soc B, 274, 1979, 10.1098/rspb.2007.0620
Hosokawa, 2007, How many symbionts are provided by mothers, acquired by offspring, and needed for successful vertical transmission in an obligate insect-bacterium mutualism?, Mol Ecol, 16, 5316, 10.1111/j.1365-294X.2007.03592.x
Kashima, 2006, Uric acid recycling in the shield bug, Parastrachia japonensis (Hemiptera: Parastrachiidae), during diapause, J Insect Physiol, 52, 816, 10.1016/j.jinsphys.2006.05.003
Hosokawa, 2010, Phylogenetic position and peculiar genetic traits of a midgut bacterial symbiont of the stinkbug Parastrachia japonensis, Appl Environ Microbiol, 76, 4130, 10.1128/AEM.00616-10
Hosokawa, 2012, Mothers never miss the moment: a fine-tuned mechanism for vertical symbiont transmission in a subsocial insect, Anim Behav, 83, 293, 10.1016/j.anbehav.2011.11.006
Tachikawa, 1985, Biology of Parastrachia japonensis (Hemiptera: Pentatomoidea:? -idae), Ann Entomol Soc Am, 78, 387, 10.1093/aesa/78.3.387
Filippi, 2001, A review of the ecological parameters and implications of subsociality in Parastrachia japonensis (Hemiptera: Cydnidae), a semelparous species that specializes on a poor resource, Popul Ecol, 43, 41, 10.1007/PL00012014
Mukai, 2014, Maternal vibration: an important cue for embryo hatching in a subsocial shield bug, PLoS One, 9, 10.1371/journal.pone.0087932
Bistolas, 2014, Symbiont polyphyly, co-evolution, and necessity in pentatomid stinkbugs from Costa Rica, Front Microbiol, 5, 349, 10.3389/fmicb.2014.00349
Duron, 2016, A wide diversity of Pantoea lineages are engaged in mutualistic symbiosis and cospeciation processes with stinkbugs, Environ Microbiol Rep, 8, 715, 10.1111/1758-2229.12432
Hosokawa, 2013, Diverse strategies for vertical symbiont transmission among subsocial stinkbugs, PLoS One, 8, 10.1371/journal.pone.0065081
Hosokawa, 2016, Obligate bacterial mutualists evolving from environmental bacteria in natural insect populations, Nat Microbiol, 1, 15011, 10.1038/nmicrobiol.2015.11
Hosokawa, 2019, Diversity and evolution of bacterial symbionts in the gut symbiotic organ of jewel stinkbugs (Hemiptera: Scutelleridae), Appl Entomol Zool, 54, 359, 10.1007/s13355-019-00630-4
Itoh, 2014, Evidence of environmental and vertical transmission of Burkholderia symbionts in the oriental chinch bug, Cavelerius saccharivorus, Appl Environ Microbiol, 80, 5974, 10.1128/AEM.01087-14
Kaiwa, 2010, Primary gut symbiont and secondary, Sodalis-allied symbiont of the Scutellerid stinkbug Cantao ocellatus, Appl Environ Microbiol, 76, 3486, 10.1128/AEM.00421-10
Kaiwa, 2014, Symbiont-supplemented maternal investment underpinning host’s ecological adaptation, Curr Biol, 24, 2465, 10.1016/j.cub.2014.08.065
Kaltenpoth, 2009, Localization and transmission route of Coriobacterium glomerans, the endosymbiont of pyrrhocorid bugs, FEMS Microbiol Ecol, 69, 373, 10.1111/j.1574-6941.2009.00722.x
Kikuchi, 2008, Diversity of bacterial symbiosis in stinkbugs, 39
Kikuchi, 2009, Host-symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs, BMC Biol, 7, 2, 10.1186/1741-7007-7-2
Prado, 2006, Vertical transmission of a pentatomid caeca-associated symbiont, Ann Entomol Soc Am, 99, 577, 10.1603/0013-8746(2006)99[577:VTOAPC]2.0.CO;2
Tada, 2011, Obligate association with gut bacterial symbiont in Japanese populations of the southern green stinkbug Nezara viridula (Heteroptera: Pentatomidae), Appl Entomol Zool, 46, 483, 10.1007/s13355-011-0066-6
Taylor, 2014, The importance of gut symbionts in the development of the brown marmorated stink bug, Halyomorpha halys (Stal), PLoS One, 9, 10.1371/journal.pone.0090312
Rozenkranz, 1939, Die Symbiose der Pentatomiden, Z Morph Ökol Tiere, 36, 279, 10.1007/BF00403148
Hosokawa, 2016, Recurrent evolution of gut symbiotic bacteria in pentatomid stinkbugs, Zool Lett, 2, 34, 10.1186/s40851-016-0061-4
Sudakaran, 2015, Evolutionary transition in symbiotic syndromes enabled diversification of phytophagous insects on an imbalanced diet, ISME J, 9, 2587, 10.1038/ismej.2015.75
Kikuchi, 2012, Symbiont-mediated insecticide resistance, Proc Natl Acad Sci U S A, 109, 8618, 10.1073/pnas.1200231109
Hayashi, 2015, Female-specific specialization of a posterior end region of the midgut symbiotic organ in Plautia splendens and allied stinkbugs, Appl Environ Microbiol, 81, 2603, 10.1128/AEM.04057-14
Oishi, 2019, Morphogenesis and development of midgut symbiotic organ of the stinkbug Plautia stali (Hemiptera: Pentatomidae), Zool Lett, 5, 10.1186/s40851-019-0134-2
Kaltenpoth, 2005, Symbiotic bacteria protect wasp larvae from fungal infestation, Curr Biol, 15, 475, 10.1016/j.cub.2004.12.084
Kaltenpoth, 2013, Defensive microbial symbionts in hymenoptera, Funct Ecol, 28, 315, 10.1111/1365-2435.12089
Kroiss, 2010, Symbiotic streptomycetes provide antibiotic combination prophylaxis for wasp offspring, Nat Chem Biol, 6, 261, 10.1038/nchembio.331
Stammer, 1936, Studien an Symbiosen zwischen Käfern und Mikroorganismen. II. Die Symbiose des Bromius obscurus L. und der Cassida-Arten (Coleopt. Chrysomel.), Z Morphol Ökol Tiere, 30, 682, 10.1007/BF00446338
Salem, 2017, Drastic genome reduction in an herbivore’s pectinolytic symbiont, Cell, 171, 1520, 10.1016/j.cell.2017.10.029
Stammer, 1929, Die Symbiose der Lagriiden (Coleoptera), Z Morphol Ökol Tiere, 15, 1, 10.1007/BF00403097
Flórez, 2017, Symbiont dynamics and strain diversity in the defensive mutualism between Lagria beetles and Burkholderia, Environ Microbiol, 19, 3674, 10.1111/1462-2920.13868
Flórez, 2017, Antibiotic-producing symbionts dynamically transition between plant pathogenicity and insect-defensive mutualism, Nat Commun, 8, 10.1038/ncomms15172
Flórez, 2018, An antifungal polyketide associated with horizontally acquired genes supports symbiont-mediated defense in Lagria villosa beetles, Nat Commun, 9, 10.1038/s41467-018-04955-6
Vega, 2005
Biedermann, 2020, Ecology and evolution of insect-fungus mutualisms, Annu Rev Entomol, 65, 431, 10.1146/annurev-ento-011019-024910
Mueller, 1998, The evolution of agriculture in ants, Science, 5385, 2034, 10.1126/science.281.5385.2034
Schultz, 2005, Reciprocal illumination: A comparison of agriculture in humans and ants, 149
Koch, 2011, Socially transmitted gut microbiota protect bumble bees against an intestinal parasite, Proc Natl Acad Sci U S A, 108, 19288, 10.1073/pnas.1110474108
Marsh, 2014, Interaction between workers during a short time window is required for bacterial symbiont transmission in Acromyrmex leaf-cutting ants, PLoS One, 9, 10.1371/journal.pone.0103269
Nalepa, 2001, Detritivory, coprophagy, and the evolution of digestive mutualisms in dictyoptera, Insectes Soc, 48, 194, 10.1007/PL00001767
Powell, 2014, Routes of acquisition of the gut microbiota of the honey bee Apis mellifera, Appl Environ Microbiol, 80, 7378, 10.1128/AEM.01861-14
Hulcr, 2016, The ambrosia symbiosis: from evolutionary ecology to practical management, Annu Rev Entomol, 62, 285, 10.1146/annurev-ento-031616-035105
Francke-Grosmann, 1967, Ectosymbiosis in wood-inhabiting insects, 141
Toki, 2012, Fungal farming in a non-social beetle, PLoS One, 7, 10.1371/journal.pone.0041893
Toki, 2013, Fungal garden making inside bamboos by a non-social fungus-growing beetle, PLoS One, 8, 10.1371/journal.pone.0079515
Tanahashi, 2010, Discovery of mycangia and the associated xylose-fermenting yeasts in stag beetles (Coleoptera: Lucanidae), Naturwissenschaften, 97, 311, 10.1007/s00114-009-0643-5
Noda, 1996, Phylogenetic position of yeastlike endosymbionts of anobiid beetles, Appl Environ Microbiol, 62, 162, 10.1128/AEM.62.1.162-167.1996
Noda, 2003, Sterol biosynthesis by symbiotes: cytochrome P450 sterol C-22 desaturase genes from yeastlike symbiotes of rice planthoppers and anobiid beetles, Insect Biochem Mol Biol, 33, 649, 10.1016/S0965-1748(03)00056-0
Breitsprecher, 1928, Beiträge zur Kenntnis der Anobiidensymbiose, Z Morphol Ökol Tiere, 11, 495, 10.1007/BF02433460
Pant, 1954, Studies on the symbiotic yeasts of two insect species, Lasioderma serricorne F. and Stegobium paniceum L, Biol Bull, 107, 420, 10.2307/1538590
Hosokawa, 2008, Symbiont acquisition alters behavior of stinkbug nymphs, Biol Lett, 4, 45, 10.1098/rsbl.2007.0510
Couret, 2019, Even obligate symbioses show signs of ecological contingency: impacts of symbiosis for an invasive stinkbug are mediated by host plant context, Ecol Evol, 9, 9087, 10.1002/ece3.5454
Oliver, 2003, Facultative bacterial symbionts in aphids confer resistance to parasitic wasps, Proc Natl Acad Sci U S A, 100, 1803, 10.1073/pnas.0335320100
Oliver, 2009, Bacteriophages encode factors required for protection in a symbiotic mutualism, Science, 325, 992, 10.1126/science.1174463
Oliver, 2014, Defensive symbiosis in the real world – advancing ecological studies of heritable, protective bacteria in aphids and beyond, Funct Ecol, 28, 341, 10.1111/1365-2435.12133
Gross, 1993, Insect behavioral and morphological defenses against parasitoids, Annu Rev Entomol, 38, 251, 10.1146/annurev.en.38.010193.001343
Shingleton, 2000, Ant tending influences soldier production in a social aphid, Proc R Soc B, 267, 1663, 10.1098/rspb.2000.1222
Dion, 2011, Symbiont infection affects aphid defensive behaviours, Biol Lett, 7, 743, 10.1098/rsbl.2011.0249
Barribeau, 2010, Aphid reproductive investment in response to mortality risks, BMC Evol Biol, 10, 251, 10.1186/1471-2148-10-251
Angelella, 2018, Endosymbionts differentially alter exploratory probing behavior of a nonpersistent plant virus vector, Microb Ecol, 76, 453, 10.1007/s00248-017-1133-5
Oliver, 2010, Facultative symbionts in aphids and the horizontal transfer of ecologically important traits, Annu Rev Entomol, 55, 247, 10.1146/annurev-ento-112408-085305
Sharon, 2010, Commensal bacteria play a role in mating preference of Drosophila melanogaster, Proc Natl Acad Sci U S A, 107, 20051, 10.1073/pnas.1009906107
Schretter, 2018, A gut microbial factor modulates locomotor behaviour in Drosophila, Nature, 563, 402, 10.1038/s41586-018-0634-9
Leitão-Gonçalves, 2017, Commensal bacteria and essential amino acids control food choice behavior and reproduction, PLoS Biol, 15, 10.1371/journal.pbio.2000862
Wong, 2017, Gut microbiota modifies olfactory-guided microbial preferences and foraging decisions in Drosophila, Curr Biol, 27, 2397, 10.1016/j.cub.2017.07.022
Akami, 2019, Intestinal bacteria modulate the foraging behavior of the oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae), PLoS One, 14, 10.1371/journal.pone.0210109
Jose, 2019, Symbiotic bacteria affect oviposition behavior in the olive fruit fly Bactrocera oleae, J Insect Physiol, 117, 10.1016/j.jinsphys.2019.103917