Relevance of UAV and sentinel-2 data fusion for estimating topsoil organic carbon after forest fire
Tài liệu tham khảo
Adab, 2020, Machine learning to estimate surface soil moisture from remote sensing data, Water, 12, 3223, 10.3390/w12113223
Alcañiz, 2018, Effects of prescribed fires on soil properties: a review, Sci. Total Environ., 613, 944, 10.1016/j.scitotenv.2017.09.144
Aldana-Jague, 2016, UAS-based soil carbon mapping using VIS-NIR (480–1000 nm) multi-spectral imaging: Potential and limitations, Geoderma, 275, 55, 10.1016/j.geoderma.2016.04.012
Alparone, 2007, Comparison of pansharpening algorithms: Outcome of the 2006 GRS-S data-fusion contest, IEEE Trans. Geosci. Remote Sens., 45, 3012, 10.1109/TGRS.2007.904923
Arcenegui, 2008, Immediate effects of wildfires on water repellency and aggregate stability in Mediterranean calcareous soils, Catena, 74, 219, 10.1016/j.catena.2007.12.008
Badía, 2017, Burn effects on soil properties associated to heat transfer under contrasting moisture content, Sci. Total Environ., 601, 1119, 10.1016/j.scitotenv.2017.05.254
Baroni, 2013, The role of vegetation and soil properties on the spatio-temporal variability of the surface soil moisture in a maize-cropped field, J. Hydrol., 489, 148, 10.1016/j.jhydrol.2013.03.007
Beltrán-Marcos, 2021, Mapping soil burn severity at very high spatial resolution from unmanned aerial vehicles, Forests, 12, 1, 10.3390/f12020179
Breiman, 2017, Classification and regression trees, Classif. Regres. Trees, 1–358, 10.1201/9781315139470-8
Calvo, 2015, The role of prescribed fire in the provision of regulating ecosystem services of Spanish heathlands, Ecol. Quest., 21, 71
Cañasveras, 2010, Estimation of aggregate stability indices in Mediterranean soils by diffuse reflectance spectroscopy, Geoderma, 158, 78, 10.1016/j.geoderma.2009.09.004
Castaldi, F., Chabrillat, S., Don, A., van Wesemael, B., 2019a. Soil Organic Carbon Mapping Using LUCAS Topsoil Database and Sentinel-2 Data: An Approach to Reduce Soil Moisture and Crop Residue Effects. Remote Sens. 2019, Vol. 11, Page 2121 11, 2121. https://doi.org/10.3390/RS11182121.
Castaldi, 2016, Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon, Remote Sens. Environ., 179, 54, 10.1016/j.rse.2016.03.025
Castaldi, 2019, Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands, ISPRS J. Photogramm. Remote Sens., 147, 267, 10.1016/j.isprsjprs.2018.11.026
Cheng, 2017, Global sensitivity analysis using support vector regression, Appl. Math. Model., 49, 587, 10.1016/j.apm.2017.05.026
Collins, 2007, Spatial patterns of large natural fires in Sierra Nevada wilderness areas, Landsc. Ecol., 22, 545, 10.1007/s10980-006-9047-5
Cortez, P., 2020. Package ‘rminer’. Data Mining Classification and Regression Methods. Version, R Package Version 1.4.6. 2020. Available online: https://cran.rproject.org/package=rminer http://www3.dsi.uminho.pt/pcortez/rminer.html (accessed on 6 May 2021).
Crucil, 2019, Assessing the performance of UAS-Compatible multispectral and hyperspectral sensors for soil organic carbon prediction, Sustainability, 11, 1889, 10.3390/su11071889
De’ath, 2000, Classification and regression trees: a powerful yet simple technique for ecological data analysis, Ecology, 81, 3178, 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2
Debaene, 2014, Effect of the number of calibration samples on the prediction of several soil properties at the farm-scale, Geoderma, 214–215, 114, 10.1016/j.geoderma.2013.09.022
Dragozi, 2014, Burned area mapping using support vector machines and the FuzCoC feature selection method on VHR IKONOS imagery, Remote Sens., 6, 12005, 10.3390/rs61212005
Ehlers, 2004, Spectral characteristics preserving image fusion based on Fourier domain filtering, Remote Sens. Environ. Monit. GIS Appl. Geol., IV. 5574, 1
Ehlers, 2010, Multi-sensor image fusion for pansharpening in remote sensing, Int. J. Image Data Fusion, 1, 25, 10.1080/19479830903561985
ESA, 2018. ESA: Level 2A input output data definition. Available online: http://step.esa.int/thirdparties/sen2cor/2.5.5/docs/S2-PDGS-MPC-L2A-IODD-V2.5.5.pdf (accessed on 8 April 2021).
ESA, 2021. Sentinel-2 User Guides. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/radiometric (accessed on 8 April 2021).
Fernández, 2021, Exploring the use of spectral indices to assess alterations in soil properties in pine stands affected by crown fire in Spain, Fire Ecol., 17, 1, 10.1186/s42408-020-00089-7
Fernández-García, 2019, Impact of burn severity on soil properties in a Pinus pinaster ecosystem immediately after fire, Int. J. Wildl. Fire, 28, 354, 10.1071/WF18103
Fernández-García, 2019, Wildfire effects on soil properties in fire-prone pine ecosystems: Indicators of burn severity legacy over the medium term after fire, Appl. Soil Ecol., 135, 147, 10.1016/j.apsoil.2018.12.002
Fernández-Guisuraga, 2018, Using unmanned aerial vehicles in postfire vegetation survey campaigns through large and heterogeneous areas: opportunities and challenges, Sensors, 18, 586, 10.3390/s18020586
Ge, 2011, Remote sensing of soil properties in precision agriculture: a review, Front. Earth Sci., 5, 229
Ge, 2019, Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring, PeerJ., 7, e6926, 10.7717/peerj.6926
Genuer, 2010, Variable selection using random forests, Pattern Recognit. Lett., 31, 2225, 10.1016/j.patrec.2010.03.014
GEODE., 2019. Mapa Geológico Digital Continuo de España. Scale 1:50000. Sheets 230 and 231; Ministerio de Industria y Energía: Madrid, Spain, 1982. Available online: http://mapas.igme.es/gis/rest/services/Cartografia_Geologica/IGME_Geode_50/MapServer (accessed on 18 March 2020).
Gholizadeh, 2018, Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging, Remote Sens., 218, 89
Giovannini, 1988, Effect of heating on some physical and chemical parameters related to soil aggregation and erodibility, Soil Sci., 146, 255, 10.1097/00010694-198810000-00006
Gomez, 2012, Regional predictions of eight common soil properties and their spatial structures from hyperspectral Vis–NIR data, Geoderma, 189–190, 176, 10.1016/j.geoderma.2012.05.023
Gómez-Plaza, 2000, Spatial patterns and temporal stability of soil moisture across a range of scales in a semi-arid environment, Hydrol. Process., 14, 1261, 10.1002/(SICI)1099-1085(200005)14:7<1261::AID-HYP40>3.0.CO;2-D
ITACYL., 2020. Instituto Tecnológico y Agrario de Castilla y León (ITACYL). Portal de suelos. Visor de Datos de Suelos. Available online: http://suelos.itacyl.es/visor_datos.
Jenerowicz, A., Woroszkiewicz, M., 2016. The pan-sharpening of satellite and UAV imagery for agricultural applications. In: Remote Sensing for Agriculture, Ecosystems, and Hydrology XVIII. N, C.M.U., M, A., (Eds.)., Spie-Int Soc Optical Engineering, Bellingham, DC. 9998. https://doi.org/10.1117/12.2241645.
Jia, 2016, Fractional vegetation cover estimation algorithm for Chinese GF-1 wide field view data, Remote Sens. Environ., 177, 184, 10.1016/j.rse.2016.02.019
Johnstone, 2006, Effects of soil burn severity on post-fire tree recruitment in boreal forest, Ecosystems, 9, 14, 10.1007/s10021-004-0042-x
Jones, 2005, 64
Jones, 2020, The impact of pan-sharpening and spectral resolution on vineyard segmentation through machine learning, Remote Sens., 12, 934, 10.3390/rs12060934
Kaplan, 2018, Sentinel-2 Pan Sharpening—Comparative Analysis, Multidiscipl. Dig. Publ. Inst. Proc., 2, 345
Kasischke, 2007, Assessing spatial and temporal variations in surface soil moisture in fire-disturbed black spruce forests in Interior Alaska using spaceborne synthetic aperture radar imagery — Implications for post-fire tree recruitment, Remote Sens. Environ., 108, 42, 10.1016/j.rse.2006.10.020
Keeley, 2009, Fire intensity, fire severity and burn severity: a brief review and suggested usage, Int. J. Wildl. Fire., 18, 116, 10.1071/WF07049
Kemper, 1986, Aggregate stability and size distribution. Methods of soil analysis: Part 1, Phys. Mineral. Methods, 9, 425
Key, C. H., Benson, N. C., 2006. Landscape assessment: ground measure of severity, the composite burn index; and remote sensing of severity, the normalized burn ratio. In: Lutes, D.C., Keane, R.E., Caratti, J.F., Key, C.H., Benson, N.C., Sutherland, S., Gangi, L.J. (Eds.), FIREMON: Fire Effects Monitoring and Inventory System. USDA Forest Service, Rocky Mountain Research Station, Ogden, UT, pp. 1–51 Gen. Tech. Rep. RMRSGTR- 164-CD: LA.
Kisi, 2016, Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution, J. Hydrol., 534, 104, 10.1016/j.jhydrol.2015.12.014
Kuhn, M., 2008. Building predictive models in R using the caret package. J Stat Softw, 28, 1-26. Available online: http://topepo.github.io/caret/index.html (accesed on 6 May 2021).
Laben, C., Brower, B., 2000. Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. United States Patent 6, 11, 875.
Lentile, 2006, Remote sensing techniques to assess active fire characteristics and post-fire effects, Int. J. Wildl. Fire., 15, 319, 10.1071/WF05097
Lin, 2020, The refined spatiotemporal representation of soil organic matter based on remote images fusion of Sentinel-2 and Sentinel-3, Int. J. Appl. Earth Obs. Geoinf., 89
Lu, 2013, Prediction of soil properties using laboratory VIS–NIR spectroscopy and Hyperion imagery, J. Geochemical Explor., 132, 26, 10.1016/j.gexplo.2013.04.003
Marcos, E., Tárrega, R., Calvo, L., Luis-Calabuig, E. 2009. Efectos del fuego sobre el suelo bajo comunidades arbustivas y arbóreas de la provincia de León. Los brezales como caso de estudio. In: Cerdá, A., Mataix-Solera, J (Eds.). Efecto de los incendios forestales sobre los suelos en España. El estado de la cuestión visto por los científicos españoles. Cátedra de Divulgación de la Ciencia. Universitat de Valencia. pp. 133-155.
Marcos, 2018, Evaluation of composite burn index and land surface temperature for assessing soil burn severity in mediterranean fire-prone pine ecosystems, Forests, 9, 1, 10.3390/f9080494
Mataix-Solera, 2002, Soil organic matter and aggregates affected by wildfire in a Pinus halepensis forest in a Mediterranean environment, Int. J. Wildl. Fire, 11, 107, 10.1071/WF02020
Mataix-Solera, 2011, Fire effects on soil aggregation: a review, Earth-Sci. Rev., 109, 44, 10.1016/j.earscirev.2011.08.002
Maurer, T., 2013. How to pan-sharpen images using the gram-schmidt pan-sharpen method–A recipe. Int. Arch. Phhotogrammetry Remote Sens. Spatial Infor. Sci. 1, W1.
Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., 2015. e1071: Misc functions of the department of statistics, probability theory group (formerly: E1071), TU Wien. R package version 1. 6–7 (http://CRAN.R-project.org/package=e1071).
Miller, 2007, Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR), Remote Sens. Environ., 109, 66, 10.1016/j.rse.2006.12.006
Moreira, 2011, Landscape - wildfire interactions in southern Europe: Implications for landscape management, J. Environ. Manage., 92, 2389, 10.1016/j.jenvman.2011.06.028
Morgan, 2001, Mapping fire regimes across time and space: understanding coarse and fine-scale fire patterns, Int. J. Wildl. Fire., 10, 329, 10.1071/WF01032
Muller, 2001, Modeling soil moisture–reflectance, Remote Sens. Environ., 76, 173, 10.1016/S0034-4257(00)00198-X
Neary, D. G., Ryan, K. C., DeBano, L. F., 2005. Wildland fire in ecosystems: effects of fire on soils and water. In Gen. Tech. Rep. RMRS-GTR-42. USDA Forest Service, Rocky Mountain Research Station, Fort Collins CO, 250. https://doi.org/10.2737/RMRS-GTR-42-V4.
Nelson, 1982, Total carbon, organic carbon and organic matter, 539
Ninyerola, 2005
Parks, 2014, A New Metric for Quantifying Burn Severity: The Relativized Burn Ratio, Remote Sens., 6, 1827, 10.3390/rs6031827
Pausas, 2012, Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime, Clim. Change, 110, 215, 10.1007/s10584-011-0060-6
Pausas, 2008, Are wildfires a disaster in the Mediterranean basin? A review, Int. J. Wildl. Fire, 17, 713, 10.1071/WF07151
Pereira, 2018, Post-fire soil management, Curr. Opin. Environ. Sci. Heal., 5, 26, 10.1016/j.coesh.2018.04.002
Puliti, 2015, Inventory of small forest areas using an unmanned aerial system, Remote Sens., 7, 9632, 10.3390/rs70809632
Quintano, 2015, Land surface temperature as potential indicator of burn severity in forest Mediterranean ecosystems, Int. J. Appl. Earth Obs. Geoinf., 36, 1
Ripley, B. 2019. Package ‘tree’. Classification and Regression Trees. Version, R Package Version 1.0-40. 2019. Available online: https://CRAN.R-project.org/package=tree (accessed on 6 May 2021).
Ripley, T., Atkinson, B., Ripley, B. 2022. Package “rpart”. Recursive partitioning for classification, regression and survival trees. An implementation of most of the functionality of the 1984 book by Breiman, Friedman, Olshen and Stone. https://cran.r-project.org/web/packages/rpart/index.html (accessed on 5.April.2022).
R Core Team
Rivera, 2013, Multiple cost functions and regularization options for improved retrieval of leaf chlorophyll content and LAI through inversion of the PROSAIL Model, Remote Sens., 5, 3280, 10.3390/rs5073280
Ruzgiene, 2015, The surface modelling based on UAV Photogrammetry and qualitative estimation, Meas. J. Int. Meas. Confed., 73, 619, 10.1016/j.measurement.2015.04.018
Sherrod, 2008, DTREG Predictive Modeling Software, Users Manual.
Shi, 2020, Vis-NIR spectroscopic assessment of soil aggregate stability and aggregate size distribution in the Belgian Loam Belt, Geoderma, 357, 10.1016/j.geoderma.2019.113958
Sola, 2018, Assessment of atmospheric correction methods for Sentinel-2 images in Mediterranean landscapes, International Journal of Applied Earth Observation and Geoinformation, 73, 63, 10.1016/j.jag.2018.05.020
Soriano-Disla, 2017, Evaluation of the performance of portable visible-infrared instruments for the prediction of soil properties, Biosyst. Eng., 161, 24, 10.1016/j.biosystemseng.2017.06.017
Stevens, 2012, Soil organic carbon predictions by airborne imaging spectroscopy: comparing cross-validation and validation, Soil Sci. Soc. Am. J., 76, 2174, 10.2136/sssaj2012.0054
Taktikou, 2016, Prediction of soil moisture from remote sensing data, Procedia Eng., 162, 309, 10.1016/j.proeng.2016.11.066
Tehrany, 2013, Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS, J. Hydrol., 504, 69, 10.1016/j.jhydrol.2013.09.034
Vaiopoulos, 2016, Pansharpening on the narrow VNIR and SWIR spectral bands of Sentinel-2 ISPRS-Int. Arch. Photogram.,, Remote Sens. Spatial Inform. Sci. XLI-B7, 41, 723
Van Der Werf, 2010, Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707, 10.5194/acp-10-11707-2010
Vapnik V., 1995. The Nature of Statistical Learning Theory. Wiley Press, New York, USA.
Vaudour, 2014, Uncertainty of soil reflectance retrieval from SPOT and RapidEye multispectral satellite images using a per-pixel bootstrapped empirical line atmospheric correction over an agricultural region, Int. J. Appl. Earth Obs. Geoinf., 26, 217
Vaudour, 2019, Sentinel-2 image capacities to predict common topsoil properties of temperate and Mediterranean agroecosystems, Remote Sens. Environ., 223, 21, 10.1016/j.rse.2019.01.006
Vega, 2013, Testing the ability of visual indicators of soil burn severity to reflect changes in soil chemical and microbial properties in pine forests and shrubland, Plant Soil., 369, 73, 10.1007/s11104-012-1532-9
Venables, 2002
Vivone, 2015, A critical comparison among pansharpening algorithms, IEEE Trans. Geosci. Remote Sens., 53, 2565, 10.1109/TGRS.2014.2361734
Wald, 1997, Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images, Photogramm. Eng. Remote Sensing, 63, 691
Xu, 2017, Incorporation of satellite remote sensing pan-sharpened imagery into digital soil prediction and mapping models to characterize soil property variability in small agricultural fields, ISPRS J. Photogramm. Remote Sens., 123, 1, 10.1016/j.isprsjprs.2016.11.001
Xu, 2018, Effects of image pansharpening on soil total nitrogen prediction models in South India, Geoderma, 320, 52, 10.1016/j.geoderma.2018.01.017
Yilmaz, 2016, Fusion of very high-resolution UAV images with criteria-based image fusion algorithm, Arab. J. Geosci., 9, 1, 10.1007/s12517-015-2098-7
Zhang, 2012, The application of small unmanned aerial systems for precision agriculture: a review, Precis. Agric., 13, 693, 10.1007/s11119-012-9274-5
Zhang, 2012, A review and comparison of commercially available pan-sharpening techniques for high resolution satellite image fusion, Int. Geosci. Remote Sens. Symp., 182–185
Zhao, 2019, Finer classification of crops by fusing UAV images and sentinel-2A data, Remote Sens., 11, 3012, 10.3390/rs11243012
Žížala, 2019, Soil organic carbon mapping using multispectral remote sensing data: Prediction ability of data with different spatial and spectral resolutions, Remote Sens., 11, 1, 10.3390/rs11242947