Relevance of UAV and sentinel-2 data fusion for estimating topsoil organic carbon after forest fire

Geoderma - Tập 430 - Trang 116290 - 2023
David Beltrán-Marcos1, Susana Suárez-Seoane2, José Manuel Fernández-Guisuraga1,3, Víctor Fernández-García1,4, Elena Marcos1, Leonor Calvo1
1Area of Ecology, Department of Biodiversity and Environmental Management, Faculty of Biological and Environmental Sciences, University of León, 24071, León, Spain
2Research Institute of Biodiversity (IMIB; UO-CSIC-PA), Department of Organisms and Systems Biology (BOS; Ecology Unit), University of Oviedo, Mieres, Oviedo, Spain
3Centro de Investigação e de Tecnologias Agroambientais e Biológicas, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
4Institute of Geography and Sustainability, Faculty of Geosciences and Environment, University of Lausanne, Geópolis, CH-1015 Lausanne, Switzerland

Tài liệu tham khảo

Adab, 2020, Machine learning to estimate surface soil moisture from remote sensing data, Water, 12, 3223, 10.3390/w12113223 Alcañiz, 2018, Effects of prescribed fires on soil properties: a review, Sci. Total Environ., 613, 944, 10.1016/j.scitotenv.2017.09.144 Aldana-Jague, 2016, UAS-based soil carbon mapping using VIS-NIR (480–1000 nm) multi-spectral imaging: Potential and limitations, Geoderma, 275, 55, 10.1016/j.geoderma.2016.04.012 Alparone, 2007, Comparison of pansharpening algorithms: Outcome of the 2006 GRS-S data-fusion contest, IEEE Trans. Geosci. Remote Sens., 45, 3012, 10.1109/TGRS.2007.904923 Arcenegui, 2008, Immediate effects of wildfires on water repellency and aggregate stability in Mediterranean calcareous soils, Catena, 74, 219, 10.1016/j.catena.2007.12.008 Badía, 2017, Burn effects on soil properties associated to heat transfer under contrasting moisture content, Sci. Total Environ., 601, 1119, 10.1016/j.scitotenv.2017.05.254 Baroni, 2013, The role of vegetation and soil properties on the spatio-temporal variability of the surface soil moisture in a maize-cropped field, J. Hydrol., 489, 148, 10.1016/j.jhydrol.2013.03.007 Beltrán-Marcos, 2021, Mapping soil burn severity at very high spatial resolution from unmanned aerial vehicles, Forests, 12, 1, 10.3390/f12020179 Breiman, 2017, Classification and regression trees, Classif. Regres. Trees, 1–358, 10.1201/9781315139470-8 Calvo, 2015, The role of prescribed fire in the provision of regulating ecosystem services of Spanish heathlands, Ecol. Quest., 21, 71 Cañasveras, 2010, Estimation of aggregate stability indices in Mediterranean soils by diffuse reflectance spectroscopy, Geoderma, 158, 78, 10.1016/j.geoderma.2009.09.004 Castaldi, F., Chabrillat, S., Don, A., van Wesemael, B., 2019a. Soil Organic Carbon Mapping Using LUCAS Topsoil Database and Sentinel-2 Data: An Approach to Reduce Soil Moisture and Crop Residue Effects. Remote Sens. 2019, Vol. 11, Page 2121 11, 2121. https://doi.org/10.3390/RS11182121. Castaldi, 2016, Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon, Remote Sens. Environ., 179, 54, 10.1016/j.rse.2016.03.025 Castaldi, 2019, Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands, ISPRS J. Photogramm. Remote Sens., 147, 267, 10.1016/j.isprsjprs.2018.11.026 Cheng, 2017, Global sensitivity analysis using support vector regression, Appl. Math. Model., 49, 587, 10.1016/j.apm.2017.05.026 Collins, 2007, Spatial patterns of large natural fires in Sierra Nevada wilderness areas, Landsc. Ecol., 22, 545, 10.1007/s10980-006-9047-5 Cortez, P., 2020. Package ‘rminer’. Data Mining Classification and Regression Methods. Version, R Package Version 1.4.6. 2020. Available online: https://cran.rproject.org/package=rminer http://www3.dsi.uminho.pt/pcortez/rminer.html (accessed on 6 May 2021). Crucil, 2019, Assessing the performance of UAS-Compatible multispectral and hyperspectral sensors for soil organic carbon prediction, Sustainability, 11, 1889, 10.3390/su11071889 De’ath, 2000, Classification and regression trees: a powerful yet simple technique for ecological data analysis, Ecology, 81, 3178, 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2 Debaene, 2014, Effect of the number of calibration samples on the prediction of several soil properties at the farm-scale, Geoderma, 214–215, 114, 10.1016/j.geoderma.2013.09.022 Dragozi, 2014, Burned area mapping using support vector machines and the FuzCoC feature selection method on VHR IKONOS imagery, Remote Sens., 6, 12005, 10.3390/rs61212005 Ehlers, 2004, Spectral characteristics preserving image fusion based on Fourier domain filtering, Remote Sens. Environ. Monit. GIS Appl. Geol., IV. 5574, 1 Ehlers, 2010, Multi-sensor image fusion for pansharpening in remote sensing, Int. J. Image Data Fusion, 1, 25, 10.1080/19479830903561985 ESA, 2018. ESA: Level 2A input output data definition. Available online: http://step.esa.int/thirdparties/sen2cor/2.5.5/docs/S2-PDGS-MPC-L2A-IODD-V2.5.5.pdf (accessed on 8 April 2021). ESA, 2021. Sentinel-2 User Guides. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/radiometric (accessed on 8 April 2021). Fernández, 2021, Exploring the use of spectral indices to assess alterations in soil properties in pine stands affected by crown fire in Spain, Fire Ecol., 17, 1, 10.1186/s42408-020-00089-7 Fernández-García, 2019, Impact of burn severity on soil properties in a Pinus pinaster ecosystem immediately after fire, Int. J. Wildl. Fire, 28, 354, 10.1071/WF18103 Fernández-García, 2019, Wildfire effects on soil properties in fire-prone pine ecosystems: Indicators of burn severity legacy over the medium term after fire, Appl. Soil Ecol., 135, 147, 10.1016/j.apsoil.2018.12.002 Fernández-Guisuraga, 2018, Using unmanned aerial vehicles in postfire vegetation survey campaigns through large and heterogeneous areas: opportunities and challenges, Sensors, 18, 586, 10.3390/s18020586 Ge, 2011, Remote sensing of soil properties in precision agriculture: a review, Front. Earth Sci., 5, 229 Ge, 2019, Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring, PeerJ., 7, e6926, 10.7717/peerj.6926 Genuer, 2010, Variable selection using random forests, Pattern Recognit. Lett., 31, 2225, 10.1016/j.patrec.2010.03.014 GEODE., 2019. Mapa Geológico Digital Continuo de España. Scale 1:50000. Sheets 230 and 231; Ministerio de Industria y Energía: Madrid, Spain, 1982. Available online: http://mapas.igme.es/gis/rest/services/Cartografia_Geologica/IGME_Geode_50/MapServer (accessed on 18 March 2020). Gholizadeh, 2018, Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging, Remote Sens., 218, 89 Giovannini, 1988, Effect of heating on some physical and chemical parameters related to soil aggregation and erodibility, Soil Sci., 146, 255, 10.1097/00010694-198810000-00006 Gomez, 2012, Regional predictions of eight common soil properties and their spatial structures from hyperspectral Vis–NIR data, Geoderma, 189–190, 176, 10.1016/j.geoderma.2012.05.023 Gómez-Plaza, 2000, Spatial patterns and temporal stability of soil moisture across a range of scales in a semi-arid environment, Hydrol. Process., 14, 1261, 10.1002/(SICI)1099-1085(200005)14:7<1261::AID-HYP40>3.0.CO;2-D ITACYL., 2020. Instituto Tecnológico y Agrario de Castilla y León (ITACYL). Portal de suelos. Visor de Datos de Suelos. Available online: http://suelos.itacyl.es/visor_datos. Jenerowicz, A., Woroszkiewicz, M., 2016. The pan-sharpening of satellite and UAV imagery for agricultural applications. In: Remote Sensing for Agriculture, Ecosystems, and Hydrology XVIII. N, C.M.U., M, A., (Eds.)., Spie-Int Soc Optical Engineering, Bellingham, DC. 9998. https://doi.org/10.1117/12.2241645. Jia, 2016, Fractional vegetation cover estimation algorithm for Chinese GF-1 wide field view data, Remote Sens. Environ., 177, 184, 10.1016/j.rse.2016.02.019 Johnstone, 2006, Effects of soil burn severity on post-fire tree recruitment in boreal forest, Ecosystems, 9, 14, 10.1007/s10021-004-0042-x Jones, 2005, 64 Jones, 2020, The impact of pan-sharpening and spectral resolution on vineyard segmentation through machine learning, Remote Sens., 12, 934, 10.3390/rs12060934 Kaplan, 2018, Sentinel-2 Pan Sharpening—Comparative Analysis, Multidiscipl. Dig. Publ. Inst. Proc., 2, 345 Kasischke, 2007, Assessing spatial and temporal variations in surface soil moisture in fire-disturbed black spruce forests in Interior Alaska using spaceborne synthetic aperture radar imagery — Implications for post-fire tree recruitment, Remote Sens. Environ., 108, 42, 10.1016/j.rse.2006.10.020 Keeley, 2009, Fire intensity, fire severity and burn severity: a brief review and suggested usage, Int. J. Wildl. Fire., 18, 116, 10.1071/WF07049 Kemper, 1986, Aggregate stability and size distribution. Methods of soil analysis: Part 1, Phys. Mineral. Methods, 9, 425 Key, C. H., Benson, N. C., 2006. Landscape assessment: ground measure of severity, the composite burn index; and remote sensing of severity, the normalized burn ratio. In: Lutes, D.C., Keane, R.E., Caratti, J.F., Key, C.H., Benson, N.C., Sutherland, S., Gangi, L.J. (Eds.), FIREMON: Fire Effects Monitoring and Inventory System. USDA Forest Service, Rocky Mountain Research Station, Ogden, UT, pp. 1–51 Gen. Tech. Rep. RMRSGTR- 164-CD: LA. Kisi, 2016, Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution, J. Hydrol., 534, 104, 10.1016/j.jhydrol.2015.12.014 Kuhn, M., 2008. Building predictive models in R using the caret package. J Stat Softw, 28, 1-26. Available online: http://topepo.github.io/caret/index.html (accesed on 6 May 2021). Laben, C., Brower, B., 2000. Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. United States Patent 6, 11, 875. Lentile, 2006, Remote sensing techniques to assess active fire characteristics and post-fire effects, Int. J. Wildl. Fire., 15, 319, 10.1071/WF05097 Lin, 2020, The refined spatiotemporal representation of soil organic matter based on remote images fusion of Sentinel-2 and Sentinel-3, Int. J. Appl. Earth Obs. Geoinf., 89 Lu, 2013, Prediction of soil properties using laboratory VIS–NIR spectroscopy and Hyperion imagery, J. Geochemical Explor., 132, 26, 10.1016/j.gexplo.2013.04.003 Marcos, E., Tárrega, R., Calvo, L., Luis-Calabuig, E. 2009. Efectos del fuego sobre el suelo bajo comunidades arbustivas y arbóreas de la provincia de León. Los brezales como caso de estudio. In: Cerdá, A., Mataix-Solera, J (Eds.). Efecto de los incendios forestales sobre los suelos en España. El estado de la cuestión visto por los científicos españoles. Cátedra de Divulgación de la Ciencia. Universitat de Valencia. pp. 133-155. Marcos, 2018, Evaluation of composite burn index and land surface temperature for assessing soil burn severity in mediterranean fire-prone pine ecosystems, Forests, 9, 1, 10.3390/f9080494 Mataix-Solera, 2002, Soil organic matter and aggregates affected by wildfire in a Pinus halepensis forest in a Mediterranean environment, Int. J. Wildl. Fire, 11, 107, 10.1071/WF02020 Mataix-Solera, 2011, Fire effects on soil aggregation: a review, Earth-Sci. Rev., 109, 44, 10.1016/j.earscirev.2011.08.002 Maurer, T., 2013. How to pan-sharpen images using the gram-schmidt pan-sharpen method–A recipe. Int. Arch. Phhotogrammetry Remote Sens. Spatial Infor. Sci. 1, W1. Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., 2015. e1071: Misc functions of the department of statistics, probability theory group (formerly: E1071), TU Wien. R package version 1. 6–7 (http://CRAN.R-project.org/package=e1071). Miller, 2007, Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR), Remote Sens. Environ., 109, 66, 10.1016/j.rse.2006.12.006 Moreira, 2011, Landscape - wildfire interactions in southern Europe: Implications for landscape management, J. Environ. Manage., 92, 2389, 10.1016/j.jenvman.2011.06.028 Morgan, 2001, Mapping fire regimes across time and space: understanding coarse and fine-scale fire patterns, Int. J. Wildl. Fire., 10, 329, 10.1071/WF01032 Muller, 2001, Modeling soil moisture–reflectance, Remote Sens. Environ., 76, 173, 10.1016/S0034-4257(00)00198-X Neary, D. G., Ryan, K. C., DeBano, L. F., 2005. Wildland fire in ecosystems: effects of fire on soils and water. In Gen. Tech. Rep. RMRS-GTR-42. USDA Forest Service, Rocky Mountain Research Station, Fort Collins CO, 250. https://doi.org/10.2737/RMRS-GTR-42-V4. Nelson, 1982, Total carbon, organic carbon and organic matter, 539 Ninyerola, 2005 Parks, 2014, A New Metric for Quantifying Burn Severity: The Relativized Burn Ratio, Remote Sens., 6, 1827, 10.3390/rs6031827 Pausas, 2012, Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime, Clim. Change, 110, 215, 10.1007/s10584-011-0060-6 Pausas, 2008, Are wildfires a disaster in the Mediterranean basin? A review, Int. J. Wildl. Fire, 17, 713, 10.1071/WF07151 Pereira, 2018, Post-fire soil management, Curr. Opin. Environ. Sci. Heal., 5, 26, 10.1016/j.coesh.2018.04.002 Puliti, 2015, Inventory of small forest areas using an unmanned aerial system, Remote Sens., 7, 9632, 10.3390/rs70809632 Quintano, 2015, Land surface temperature as potential indicator of burn severity in forest Mediterranean ecosystems, Int. J. Appl. Earth Obs. Geoinf., 36, 1 Ripley, B. 2019. Package ‘tree’. Classification and Regression Trees. Version, R Package Version 1.0-40. 2019. Available online: https://CRAN.R-project.org/package=tree (accessed on 6 May 2021). Ripley, T., Atkinson, B., Ripley, B. 2022. Package “rpart”. Recursive partitioning for classification, regression and survival trees. An implementation of most of the functionality of the 1984 book by Breiman, Friedman, Olshen and Stone. https://cran.r-project.org/web/packages/rpart/index.html (accessed on 5.April.2022). R Core Team Rivera, 2013, Multiple cost functions and regularization options for improved retrieval of leaf chlorophyll content and LAI through inversion of the PROSAIL Model, Remote Sens., 5, 3280, 10.3390/rs5073280 Ruzgiene, 2015, The surface modelling based on UAV Photogrammetry and qualitative estimation, Meas. J. Int. Meas. Confed., 73, 619, 10.1016/j.measurement.2015.04.018 Sherrod, 2008, DTREG Predictive Modeling Software, Users Manual. Shi, 2020, Vis-NIR spectroscopic assessment of soil aggregate stability and aggregate size distribution in the Belgian Loam Belt, Geoderma, 357, 10.1016/j.geoderma.2019.113958 Sola, 2018, Assessment of atmospheric correction methods for Sentinel-2 images in Mediterranean landscapes, International Journal of Applied Earth Observation and Geoinformation, 73, 63, 10.1016/j.jag.2018.05.020 Soriano-Disla, 2017, Evaluation of the performance of portable visible-infrared instruments for the prediction of soil properties, Biosyst. Eng., 161, 24, 10.1016/j.biosystemseng.2017.06.017 Stevens, 2012, Soil organic carbon predictions by airborne imaging spectroscopy: comparing cross-validation and validation, Soil Sci. Soc. Am. J., 76, 2174, 10.2136/sssaj2012.0054 Taktikou, 2016, Prediction of soil moisture from remote sensing data, Procedia Eng., 162, 309, 10.1016/j.proeng.2016.11.066 Tehrany, 2013, Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS, J. Hydrol., 504, 69, 10.1016/j.jhydrol.2013.09.034 Vaiopoulos, 2016, Pansharpening on the narrow VNIR and SWIR spectral bands of Sentinel-2 ISPRS-Int. Arch. Photogram.,, Remote Sens. Spatial Inform. Sci. XLI-B7, 41, 723 Van Der Werf, 2010, Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707, 10.5194/acp-10-11707-2010 Vapnik V., 1995. The Nature of Statistical Learning Theory. Wiley Press, New York, USA. Vaudour, 2014, Uncertainty of soil reflectance retrieval from SPOT and RapidEye multispectral satellite images using a per-pixel bootstrapped empirical line atmospheric correction over an agricultural region, Int. J. Appl. Earth Obs. Geoinf., 26, 217 Vaudour, 2019, Sentinel-2 image capacities to predict common topsoil properties of temperate and Mediterranean agroecosystems, Remote Sens. Environ., 223, 21, 10.1016/j.rse.2019.01.006 Vega, 2013, Testing the ability of visual indicators of soil burn severity to reflect changes in soil chemical and microbial properties in pine forests and shrubland, Plant Soil., 369, 73, 10.1007/s11104-012-1532-9 Venables, 2002 Vivone, 2015, A critical comparison among pansharpening algorithms, IEEE Trans. Geosci. Remote Sens., 53, 2565, 10.1109/TGRS.2014.2361734 Wald, 1997, Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images, Photogramm. Eng. Remote Sensing, 63, 691 Xu, 2017, Incorporation of satellite remote sensing pan-sharpened imagery into digital soil prediction and mapping models to characterize soil property variability in small agricultural fields, ISPRS J. Photogramm. Remote Sens., 123, 1, 10.1016/j.isprsjprs.2016.11.001 Xu, 2018, Effects of image pansharpening on soil total nitrogen prediction models in South India, Geoderma, 320, 52, 10.1016/j.geoderma.2018.01.017 Yilmaz, 2016, Fusion of very high-resolution UAV images with criteria-based image fusion algorithm, Arab. J. Geosci., 9, 1, 10.1007/s12517-015-2098-7 Zhang, 2012, The application of small unmanned aerial systems for precision agriculture: a review, Precis. Agric., 13, 693, 10.1007/s11119-012-9274-5 Zhang, 2012, A review and comparison of commercially available pan-sharpening techniques for high resolution satellite image fusion, Int. Geosci. Remote Sens. Symp., 182–185 Zhao, 2019, Finer classification of crops by fusing UAV images and sentinel-2A data, Remote Sens., 11, 3012, 10.3390/rs11243012 Žížala, 2019, Soil organic carbon mapping using multispectral remote sensing data: Prediction ability of data with different spatial and spectral resolutions, Remote Sens., 11, 1, 10.3390/rs11242947