Releasing rate optimization in a single and multiple transmitter local drug delivery system with limited resources

Nano Communication Networks - Tập 11 - Trang 114-122 - 2017
Shirin Salehi1, Naghmeh S. Moayedian1, Simon S. Assaf2, Raul G. Cid-Fuentes3, Josep Solé-Pareta2, Eduard Alarcón2
1Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
2NaNoNetworking Center in Catalunya (N3Cat), Universitat Politècnica de Catalunya, Spain
3IK4-Ikerlan Technology Research Centre, Information and Communication Technologies Area, P J.M. Arizmendiarrieta, 2. 20500 Arrasate-Mondragón, Spain

Tài liệu tham khảo

Akyildiz, 2011, Nanonetworks: A new frontier in communications, Commun. ACM, 54, 84, 10.1145/2018396.2018417 Farsad, 2016, A comprehensive survey of recent advancements in molecular communication, IEEE Commun. Surv. Tutor., 99, 1-34 Felicetti, 2016, Applications of molecular communications to medicine: A survey, Nano Commun. Netw., 7, 27, 10.1016/j.nancom.2015.08.004 Felicetti, 2014, TCP-like molecular communications, IEEE J. Sel. Areas Commun., 32, 2354, 10.1109/JSAC.2014.2367653 Debbage, 2009, Targeted drugs and nanomedicine: present and future, Current Pharm. Des., 15, 153, 10.2174/138161209787002870 Chahibi, 2013, A molecular communication system model for particulate drug delivery systems, IEEE Trans. Biomed. Eng., 60, 10.1109/TBME.2013.2271503 U.A. Chude-Okonkwo, Diffusion-controlled enzyme-catalyzed molecular communication system for targeted drug delivery, in: IEEE Global Communications Conference, GLOBECOM, 2014 Chude-Okonkwo, 2016, Molecular communication model for targeted drug delivery in multiple disease sites with diversely expressed enzymes, IEEE Trans. NanoBioscience, 15, 230, 10.1109/TNB.2016.2526783 Nakano, 2013, Transmission rate control for molecular communication among biological nanomachines, IEEE J. Sel. Areas Commun., 31, 835, 10.1109/JSAC.2013.SUP2.12130016 S. Salehi, S.S. Assaf, R.G. Cid-Fuentes, N.S. Moayedian, J. Solé-Pareta, E. Alarcón, Optimal deployment of multiple transmitter drug delivery system: A spatial sampling theorem approach, in: Proc. of the 3rd ACM Int. Conf. on Nanoscale Computing and Communication, 2016 Femminella, 2015, A molecular communications model for drug delivery, IEEE Trans. NanoBioscience, 14, 935, 10.1109/TNB.2015.2489565 Allen, 2004, Drug delivery systems: entering the mainstream, Science, 303, 1818, 10.1126/science.1095833 Siepmann, 2011 Llatser, 2014, N3sim: Simulation framework for diusion-based molecular communication nanonetworks, Simul. Model. Pract. Theory, 42, 2, 10.1016/j.simpat.2013.11.004 Nakano, 2014, Molecular communication among biological nanomachines: A layered architecture and research issues, IEEE Trans. NanoBioscience, 13, 169, 10.1109/TNB.2014.2316674 Kim, 2013, Novel modulation techniques using isomers as messenger molecules for nano communication networks via diffusion, IEEE J. Sel. Areas Commun., 31, 847, 10.1109/JSAC.2013.SUP2.12130017 A. Ahmadzadeh, A. Noel, R. Schober, Analysis and design of two-hop diffusion-based molecular communication networks, in: Proc. IEEE GLOBECOM, 2014 Ahmadzadeh, 2015, Analysis and design of multi-hop diffusion-based molecular communication networks, IEEE Trans. Mol. Biol. Multi-Scale Commun., 1, 144, 10.1109/TMBMC.2015.2501741 Yilmaz, 2014, Simulation study of molecular communication systems with an absorbing receiver: modulation and ISI mitigation techniques, Simul. Model. Pract. Theory, 49, 136, 10.1016/j.simpat.2014.09.002 H.B. Yilmaz, N.R. Kim, C.B. Chae, Effect of ISI mitigation on modulation techniques in molecular communication via diffusion, in: Proc. ACM NANOCOM, 2014 Llatser, 2013, Detection techniques for diffusion-based molecular communication, IEEE J. Sel. Areas Commun., 31, 726, 10.1109/JSAC.2013.SUP2.1213005 Moore, 2011, Addressing by beacon distances using molecular communications, Nano Commun. Netw., 2 Wang, 2015, Distance estimation schemes for diffusion based molecular communication systems, IEEE Commun. Lett., 19, 399, 10.1109/LCOMM.2014.2387826 A. Noel, K.C. Cheung, R. Schober, Bounds on Distance Estimation via Diffusive Molecular Communication, in: IEEE Global Commun. Conf., GLOBECOM, 2014 Balasubramaniam, 2011, Development of artificial neuronal networks for molecular communication, Nano Commun. Netw., 2, 150, 10.1016/j.nancom.2011.05.004 Suzuki, 2014, A nonparametric stochastic optimizer for tdma-based neuronal signaling, IEEE Trans. NanoBioscience, 13, 244, 10.1109/TNB.2014.2355015 Aijaz, 2015, Opportunistic routing in diffusion-based molecular nanonetworks, IEEE Wirel. Commun. Lett., 4, 321, 10.1109/LWC.2015.2415475 Lio, 2012, Opportunistic routing through conjugation in bacteria communication, Nano Commun. Netw., 3, 36, 10.1016/j.nancom.2011.10.003 Balasubramaniam, 2013, Multi-hop conjugation based bacteria nanonetworks, IEEE Trans. NanoBioscience, 12, 47, 10.1109/TNB.2013.2239657 Enomoto, 2011, Design of self-organizing microtubule networks for molecular communication, Nano Commun. Netw., 2, 16, 10.1016/j.nancom.2011.04.002 Bossert, 1963, The analysis of olfactory communication among animals, J. Theoret. Biol., 5, 443, 10.1016/0022-5193(63)90089-4 Garralda, 2011, Simulation-based evaluation of the diusion-based physical channel in molecular nanonetworks Tang, 2014, Computational modeling of 3D tumor growth and angiogenesis for chemotherapy evaluation, PLoS One, 9, e83962, 10.1371/journal.pone.0083962 E. Alarcon, R.G. Cid Fuentes, L. Felicetti, M. Femminella, P. Li, G. Realli, MolComML: The Molecular Communication Markup Language, in: Proc. of the 3rd ACM Int. Conf. on Nanoscale Computing and Communication, 2016 Bhattarai, 2010, Chitosan-based hydrogels for controlled, localized drug delivery, Adv. Drug Deliv. Rev., 62, 83, 10.1016/j.addr.2009.07.019 Ray, 2016, A phase I study of intratumoral ipilimumab and interleukin-2 in patients with advanced melanoma, Oncotarget, 7, 64390, 10.18632/oncotarget.10453 Bommareddy, 2017, Intratumoral approaches for the treatment of melanoma, Cancer J., 23, 40, 10.1097/PPO.0000000000000234 GuhaSarkar, 2017, Urothelium-adherent, ion-triggered liposome-in-gel system as a platform for intravesical drug delivery, J. Control. Release, 245, 147, 10.1016/j.jconrel.2016.11.031 Wise, 2000 Jogani, 2008, Recent patents review on intranasal administration for CNS drug delivery, Recent Pat. Drug. Deliv. Formul., 2, 25, 10.2174/187221108783331429