Relaxation Approximation and Asymptotic Stability of Stratified Solutions to the IPM Equation
Tóm tắt
We prove the nonlinear asymptotic stability of stably stratified solutions to the Incompressible Porous Media equation (IPM) for initial perturbations in
$$\dot{H}^{1-\tau }(\mathbb {R}^2) \cap \dot{H}^s(\mathbb {R}^2)$$
with
$$s > 3$$
and for any
$$0< \tau <1$$
. Such a result improves upon the existing literature, where the asymptotic stability is proved for initial perturbations belonging at least to
$$H^{20}(\mathbb {R}^2)$$
. More precisely, the aim of the article is threefold. First, we provide a simplified and improved proof of global-in-time well-posedness of the Boussinesq equations with strongly damped vorticity in
$$H^{1-\tau }(\mathbb {R}^2) \cap \dot{H}^s(\mathbb {R}^2)$$
with
$$s > 3$$
and
$$0< \tau <1$$
. Next, we prove the strong convergence of the Boussinesq system with damped vorticity towards (IPM) under a suitable scaling. Lastly, the asymptotic stability of stratified solutions to (IPM) follows as a byproduct. A symmetrization of the approximating system and a careful study of the anisotropic properties of the equations via anisotropic Littlewood-Paley decomposition play key roles to obtain uniform energy estimates. Finally, one of the main new and crucial points is the integrable time decay of the vertical velocity
$$\Vert u_2(t)\Vert _{L^\infty (\mathbb {R}^2)}$$
for initial data only in
$$\dot{H}^{1-\tau }(\mathbb {R}^2) \cap \dot{H}^s(\mathbb {R}^2)$$
with
$$s >3$$
.
Tài liệu tham khảo
Beauchard, K., Zuazua, E.: Large time asymptotics for partially dissipative hyperbolic systems. Arch. Rational Mech. Anal 199, 177–227, 2011
Bianchini, R., Dalibard, A.-L., Saint-Raymond, L.: Near-critical reflection of internal waves. Anal. PDE 14(1), 205–249, 2021
Bianchini R. Natalini, R. Asymptotic behavior of 2d stably stratified fluids with a damping term in the velocity equation. ESAIM: COCV, 27 (2021)
Bianchini, S., Hanouzet, B., Natalini, R.: Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Comm. Pure and Appl. Math. 60, 1559–1622, 2007
Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. 4(14), 209–246, 1981
Castro, Á., Córdoba, D., Lear, D.: Global existence of quasi-stratified solutions for the confined IPM equation. Arch. Ration. Mech. Anal. 232(1), 437–471, 2019
Castro, Á., Córdoba, D., Lear, D.: On the asymptotic stability of stratified solutions for the 2D Boussinesq equations with a velocity damping term. Math. Models Methods Appl. Sci. 29(7), 1227–1277, 2019
Chemin, J.-Y., Zhang, P.: On the global wellposedness of the 3-d incompressible anisotropic Navier-Stokes equations. Commun. Math. Phys. 272, 529–566, 2007
Coulombel, J.-F., Goudon, T.: The strong relaxation limit of the multidimensional isothermal Euler equations. Trans. Amer. Math. Soc. 359(2), 637–648, 2007
Crin-Barat, T.: Partially dissipative hyperbolic systems and applications to fluid mechanics. University Paris-Est, Thesis (2021)
Crin-Barat T. Danchin, R. Global existence for partially dissipative hyperbolic systems in the \({L}^p\) framework, and relaxation limit. Mathematische Annalen, 2022.
Crin-Barat, T., Danchin, R.: Partially dissipative hyperbolic systems in the critical regularity setting : the multi-dimensional case. Journal de Mathématiques Pures et Appliquées 165, 1–41, 2022
Crin-Barat, T., Danchin, R.: Partially dissipative one-dimensional hyperbolic systems in the critical regularity setting, and applications. Pure and Applied Analysis 4(1), 85–125, 2022
D’Ancona, P.: A short proof of commutator estimates. J. Fourier Anal. Appl. 25(3), 1134–1146, 2019
Desjardins, B., Lannes, D., Saut, J.-C.: Normal mode decomposition and dispersive and nonlinear mixing in stratified fluids. Water Waves 3(1), 153–192, 2021
Elgindi, T.M.: On the asymptotic stability of stationary solutions of the inviscid incompressible porous medium equation. Arch. Rational Mech. Anal. 225, 573–599, 2017
Elgindi, T. M., Shikh Khalil, K. R.: Strong ill-posedness in \({L}^\infty \) for the Riesz transform problem. arXiv preprint arXiv:2207.04556 (2022).
Elgindi, T.M., Widmayer, K.: Sharp decay estimates for an anisotropic linear semigroup and applications to the surface quasi-geostrophic and inviscid Boussinesq systems. SIAM J. Math. Anal. 47(6), 4672–4684, 2015
Gallay, T.: Stability of vortices in ideal fluids: the legacy of Kelvin and Rayleigh. In Hyperbolic problems: theory, numerics, applications, volume 10 of AIMS Ser. Appl. Math., 42–59. Am. Inst. Math. Sci. (AIMS), Springfield, MO (2020).
Grafakos, L.: Classical Fourier analysis, volume 249 of Graduate Texts in Mathematics, third edition. Springer, New York (2014).
Guo, Y., Pausader, B., Widmayer, K.: Global axisymmetric euler flows with rotation. arXiv preprint arXiv:2109.01029 (2021).
Haspot, B.: Existence of global strong solutions in critical spaces for barotropic viscous fluids. Arch. Rational Mech. Anal 202, 427–460, 2011
Hoff, D.: Uniqueness of weak solutions of the Navier-Stokes equations of multimensionnal, compressible flow. SIAM J. Math. Anal 37, 1742–1760, 2006
Hsiao, L.: Quasilinear Hyperbolic Systems and Dissipative Mechanisms, volume Singapore. World Scientific Publishing (1997).
Junca, S., Rascle, M.: Strong relaxation of the isothermal Euler system to the heat equation. Z. angew. Math. Phys. 53, 239–264, 2002
Kiselev, A., Yao, Y.: Small scale formations in the incompressible porous media equation. arXiv:2102.05213 (2021).
Li, D.: On Kato-Ponce and fractional Leibniz. Rev. Mat. Iberoam. 35(1), 23–100, 2019
Lin, C., Coulombel, J.-F.: The strong relaxation limit of the multidimensional Euler equations. Nonlinear Differential Equations and Applications NoDEA 20, 447–461, 2013
Lin, F., Xu, L., Zhang, P.: Global small solutions to 2-D incompressible MHD system. J. Differ. Equ. 259, 10, 2013
Lin, F., Zhang, P.: Global small solutions to an MHD-type system: The three-dimensional case. Communications on Pure and Applied Mathematics, LXVII:0531-0580 (2014).
Marcati, P., Milani, A.: The one-dimensional Darcy’s law as the limit of a compressible Euler flow. J. Differ. Equ. 84, 129–147, 1990
Marcati, P., Rubino, B.: Hyperbolic to parabolic relaxation theory for quasilinear first order systems. J. Differ. Equ. 162, 359–399, 2000
Paicu, M.: Equation anisotrope de Navier-Stokes dans des espaces critiques. Rev. Mat. Iberoamericana 21, 179–235, 2005
Paicu, M.: Équation périodique de navier-stokes sans viscosité dans une direction. Commun. Partial Differ. Equ. 30, 1107–1140, 2005
Wan, R.: Global well-posedness for the 2D Boussinesq equations with a velocity damping term. Discrete Contin. Dyn. Syst. 39, 2019
Xu, J., Wang, Z.: Relaxation limit in Besov spaces for compressible Euler equations. Journal de Mathématiques Pures et Appliquées 99, 43–61, 2013