Relaxation Approximation and Asymptotic Stability of Stratified Solutions to the IPM Equation

Archive for Rational Mechanics and Analysis - Tập 248 - Trang 1-35 - 2023
Roberta Bianchini1, Timothée Crin-Barat2, Marius Paicu3
1Consiglio Nazionale delle Ricerche, Rome, Italy
2Chair for Dynamics, Control, and Numerics (Alexander von Humboldt Professorship), Department of Data Science, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
3Institut de Mathématiques de Bordeaux, Université de Bordeaux, Talence Cedex, France

Tóm tắt

We prove the nonlinear asymptotic stability of stably stratified solutions to the Incompressible Porous Media equation (IPM) for initial perturbations in $$\dot{H}^{1-\tau }(\mathbb {R}^2) \cap \dot{H}^s(\mathbb {R}^2)$$ with $$s > 3$$ and for any $$0< \tau <1$$ . Such a result improves upon the existing literature, where the asymptotic stability is proved for initial perturbations belonging at least to $$H^{20}(\mathbb {R}^2)$$ . More precisely, the aim of the article is threefold. First, we provide a simplified and improved proof of global-in-time well-posedness of the Boussinesq equations with strongly damped vorticity in $$H^{1-\tau }(\mathbb {R}^2) \cap \dot{H}^s(\mathbb {R}^2)$$ with $$s > 3$$ and $$0< \tau <1$$ . Next, we prove the strong convergence of the Boussinesq system with damped vorticity towards (IPM) under a suitable scaling. Lastly, the asymptotic stability of stratified solutions to (IPM) follows as a byproduct. A symmetrization of the approximating system and a careful study of the anisotropic properties of the equations via anisotropic Littlewood-Paley decomposition play key roles to obtain uniform energy estimates. Finally, one of the main new and crucial points is the integrable time decay of the vertical velocity $$\Vert u_2(t)\Vert _{L^\infty (\mathbb {R}^2)}$$ for initial data only in $$\dot{H}^{1-\tau }(\mathbb {R}^2) \cap \dot{H}^s(\mathbb {R}^2)$$ with $$s >3$$ .

Tài liệu tham khảo

Beauchard, K., Zuazua, E.: Large time asymptotics for partially dissipative hyperbolic systems. Arch. Rational Mech. Anal 199, 177–227, 2011 Bianchini, R., Dalibard, A.-L., Saint-Raymond, L.: Near-critical reflection of internal waves. Anal. PDE 14(1), 205–249, 2021 Bianchini R. Natalini, R. Asymptotic behavior of 2d stably stratified fluids with a damping term in the velocity equation. ESAIM: COCV, 27 (2021) Bianchini, S., Hanouzet, B., Natalini, R.: Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Comm. Pure and Appl. Math. 60, 1559–1622, 2007 Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. 4(14), 209–246, 1981 Castro, Á., Córdoba, D., Lear, D.: Global existence of quasi-stratified solutions for the confined IPM equation. Arch. Ration. Mech. Anal. 232(1), 437–471, 2019 Castro, Á., Córdoba, D., Lear, D.: On the asymptotic stability of stratified solutions for the 2D Boussinesq equations with a velocity damping term. Math. Models Methods Appl. Sci. 29(7), 1227–1277, 2019 Chemin, J.-Y., Zhang, P.: On the global wellposedness of the 3-d incompressible anisotropic Navier-Stokes equations. Commun. Math. Phys. 272, 529–566, 2007 Coulombel, J.-F., Goudon, T.: The strong relaxation limit of the multidimensional isothermal Euler equations. Trans. Amer. Math. Soc. 359(2), 637–648, 2007 Crin-Barat, T.: Partially dissipative hyperbolic systems and applications to fluid mechanics. University Paris-Est, Thesis (2021) Crin-Barat T. Danchin, R. Global existence for partially dissipative hyperbolic systems in the \({L}^p\) framework, and relaxation limit. Mathematische Annalen, 2022. Crin-Barat, T., Danchin, R.: Partially dissipative hyperbolic systems in the critical regularity setting : the multi-dimensional case. Journal de Mathématiques Pures et Appliquées 165, 1–41, 2022 Crin-Barat, T., Danchin, R.: Partially dissipative one-dimensional hyperbolic systems in the critical regularity setting, and applications. Pure and Applied Analysis 4(1), 85–125, 2022 D’Ancona, P.: A short proof of commutator estimates. J. Fourier Anal. Appl. 25(3), 1134–1146, 2019 Desjardins, B., Lannes, D., Saut, J.-C.: Normal mode decomposition and dispersive and nonlinear mixing in stratified fluids. Water Waves 3(1), 153–192, 2021 Elgindi, T.M.: On the asymptotic stability of stationary solutions of the inviscid incompressible porous medium equation. Arch. Rational Mech. Anal. 225, 573–599, 2017 Elgindi, T. M., Shikh Khalil, K. R.: Strong ill-posedness in \({L}^\infty \) for the Riesz transform problem. arXiv preprint arXiv:2207.04556 (2022). Elgindi, T.M., Widmayer, K.: Sharp decay estimates for an anisotropic linear semigroup and applications to the surface quasi-geostrophic and inviscid Boussinesq systems. SIAM J. Math. Anal. 47(6), 4672–4684, 2015 Gallay, T.: Stability of vortices in ideal fluids: the legacy of Kelvin and Rayleigh. In Hyperbolic problems: theory, numerics, applications, volume 10 of AIMS Ser. Appl. Math., 42–59. Am. Inst. Math. Sci. (AIMS), Springfield, MO (2020). Grafakos, L.: Classical Fourier analysis, volume 249 of Graduate Texts in Mathematics, third edition. Springer, New York (2014). Guo, Y., Pausader, B., Widmayer, K.: Global axisymmetric euler flows with rotation. arXiv preprint arXiv:2109.01029 (2021). Haspot, B.: Existence of global strong solutions in critical spaces for barotropic viscous fluids. Arch. Rational Mech. Anal 202, 427–460, 2011 Hoff, D.: Uniqueness of weak solutions of the Navier-Stokes equations of multimensionnal, compressible flow. SIAM J. Math. Anal 37, 1742–1760, 2006 Hsiao, L.: Quasilinear Hyperbolic Systems and Dissipative Mechanisms, volume Singapore. World Scientific Publishing (1997). Junca, S., Rascle, M.: Strong relaxation of the isothermal Euler system to the heat equation. Z. angew. Math. Phys. 53, 239–264, 2002 Kiselev, A., Yao, Y.: Small scale formations in the incompressible porous media equation. arXiv:2102.05213 (2021). Li, D.: On Kato-Ponce and fractional Leibniz. Rev. Mat. Iberoam. 35(1), 23–100, 2019 Lin, C., Coulombel, J.-F.: The strong relaxation limit of the multidimensional Euler equations. Nonlinear Differential Equations and Applications NoDEA 20, 447–461, 2013 Lin, F., Xu, L., Zhang, P.: Global small solutions to 2-D incompressible MHD system. J. Differ. Equ. 259, 10, 2013 Lin, F., Zhang, P.: Global small solutions to an MHD-type system: The three-dimensional case. Communications on Pure and Applied Mathematics, LXVII:0531-0580 (2014). Marcati, P., Milani, A.: The one-dimensional Darcy’s law as the limit of a compressible Euler flow. J. Differ. Equ. 84, 129–147, 1990 Marcati, P., Rubino, B.: Hyperbolic to parabolic relaxation theory for quasilinear first order systems. J. Differ. Equ. 162, 359–399, 2000 Paicu, M.: Equation anisotrope de Navier-Stokes dans des espaces critiques. Rev. Mat. Iberoamericana 21, 179–235, 2005 Paicu, M.: Équation périodique de navier-stokes sans viscosité dans une direction. Commun. Partial Differ. Equ. 30, 1107–1140, 2005 Wan, R.: Global well-posedness for the 2D Boussinesq equations with a velocity damping term. Discrete Contin. Dyn. Syst. 39, 2019 Xu, J., Wang, Z.: Relaxation limit in Besov spaces for compressible Euler equations. Journal de Mathématiques Pures et Appliquées 99, 43–61, 2013