Relative seismic velocity variations correlate with deformation at Kīlauea volcano

Science advances - Tập 3 Số 6 - 2017
Clare Donaldson1, Corentin Caudron1, Robert G. Green1, W. A. Thelen2, R. S. White1
1Bullard Laboratories, Department of Earth Sciences, University of Cambridge, Madingley Road, Cambridge, CB3 0EZ, UK
2U.S. Geological Survey, Cascades Volcano Observatory, Vancouver, WA 98661, USA.

Tóm tắt

Seismic velocity changes correlate with deformation at Kīlauea volcano, advancing noise interferometry as a monitoring tool.

Từ khóa


Tài liệu tham khảo

10.1038/ngeo104

Z. Duputel, V. Ferrazzini, F. Brenguier, N. Shapiro, M. Campillo, A. Nercessian, Real time monitoring of relative velocity changes using ambient seismic noise at the Piton de la Fournaise volcano (La Réunion) from January 2006 to June 2007. J. Volcanol. Geotherm. Res. 184, 164–173 (2009).

A. Obermann, T. Planès, E. Larose, M. Campillo, Imaging preeruptive and coeruptive structural and mechanical changes of a volcano with ambient seismic noise. J. Geophys. Res. Solid Earth 118, 6285–6294 (2013).

10.1126/science.1254073

D. Rivet, F. Brenguier, D. Clarke, N. M. Shapiro, A. Peltier, Long-term dynamics of Piton de la Fournaise volcano from 13 years of seismic velocity change measurements and GPS observations. J. Geophys. Res. Solid Earth 119, 7654–7666 (2014).

D. Wilson, T. Elias, T. Orr, M. Patrick, J. Sutton, D. Swanson, Small explosion from new vent at Kilauea’s summit. Eos Trans. AGU 89, 203 (2008).

M. P. Poland A. Miklius E. K. Montgomery-Brown Magma supply storage and transport at shield-stage Hawaiian volcanoes in Characteristics of Hawaiian Volcanoes M. P. Poland T. J. Takahashi C. M. Landowski Eds. (U.S. Geological Survey Professional Paper 1801 U.S. Geological Survey 2014) pp. 179–234.

K. R. Anderson M. P. Poland J. H. Johnson A. Miklius Episodic deflation–inflation events at Kīlauea Volcano and implications for the shallow magma system in Hawaiian Volcanoes: From Source to Surface R. Carey V. Cayol M. Poland D. Weis Eds. (John Wiley & Sons Inc. 2015).

M. R. Patrick, K. R. Anderson, M. P. Poland, T. R. Orr, D. A. Swanson, Lava lake level as a gauge of magma reservoir pressure and eruptive hazard. Geology 43, 831–834 (2015).

10.1016/j.jvolgeores.2016.11.010

10.1029/2006GL027797

10.1029/JB089iB07p05719

10.1126/science.1078551

10.1121/1.3125345

R. Weaver, B. Froment, On the correlation of non-isotropically distributed ballistic scalar diffuse waves. J. Acoust. Soc. Am. 126, 1817–1826 (2009).

A. Colombi, J. Chaput, F. Brenguier, G. Hillers, P. Roux, M. Campillo, On the temporal stability of the coda of ambient noise correlations. C. R. Geosci. 346, 307–316 (2014).

S. Ballmer, C. J. Wolfe, P. G. Okubo, M. M. Haney, C. H. Thurber, Ambient seismic noise interferometry in Hawai’i reveals long-range observability of volcanic tremor. Geophys. J. Int. 194, 512–523 (2013).

D. Fee, M. Garcés, M. Patrick, B. Chouet, P. Dawson, D. Swanson, Infrasonic harmonic tremor and degassing bursts from Halema’uma’u Crater, Kilauea Volcano, Hawaii. J. Geophys. Res. Solid Earth 115, B11316 (2010).

M. Patrick, D. Wilson, D. Fee, T. Orr, D. Swanson, Shallow degassing events as a trigger for very-long-period seismicity at Kīlauea Volcano, Hawai‘i. Bull. Volcanol. 73, 1179–1186 (2011).

P. A. Nadeau, C. A. Werner, G. P. Waite, S. A. Carn, I. D. Brewer, T. Elias, A. J. Sutton, C. Kern, Using SO2 camera imagery and seismicity to examine degassing and gas accumulation at Kīlauea Volcano, May 2010. J. Volcanol. Geotherm. Res. 300, 70–80 (2015).

M. R. Patrick, T. Orr, A. J. Sutton, E. Lev, W. Thelen, D. Fee, Shallowly driven fluctuations in lava lake outgassing (gas pistoning), Kīlauea Volcano. Earth Planet. Sci. Lett. 433, 326–338 (2016).

J. P. Kauahikaua The 2014 annual report for the Hawaiian volcano observatory (USGS Scientific Investigations Report 2016-5059 U.S. Geological Survey 2016).

10.1002/2016JB013057

10.1029/JB079i035p05412

N. L. Bennington, M. Haney, S. De Angelis, C. H. Thurber, J. Freymueller, Monitoring changes in seismic velocity related to an ongoing rapid inflation event at Okmok volcano, Alaska. J. Geophys. Res. Solid Earth 120, 5664–5676 (2015).

J.-F. Lénat, P. Bachèlery, A. Peltier, The interplay between collapse structures, hydrothermal systems, and magma intrusions: The case of the central area of Piton de la Fournaise volcano. Bull. Volcanol. 74, 407–421 (2012).

C. Caudron, T. Lecocq, D. K. Syahbana, W. McCausland, A. Watlet, T. Camelbeeck, A. Bernard, Stress and mass changes at a “wet” volcano: Example during the 2011–2012 volcanic unrest at Kawah Ijen volcano (Indonesia). J. Geophys. Res. Solid Earth 120, 5117–5134 (2015).

A. Budi-Santoso, P. Lesage, Velocity variations associated with the large 2010 eruption of Merapi volcano, Java, retrieved from seismic multiplets and ambient noise cross-correlation. Geophys. J. Int. 206, 221–240 (2016).

T. Anggono, T. Nishimura, H. Sato, H. Ueda, M. Ukawa, Spatio-temporal changes in seismic velocity associated with the 2000 activity of Miyakejima volcano as inferred from cross-correlation analyses of ambient noise. J. Volcanol. Geotherm. Res. 247–248, 93–107 (2012).

A. Ratdomopurbo, G. Poupinet, Monitoring a temporal change of seismic velocity in a volcano: Application to the 1992 eruption of Mt. Merapi (Indonesia). Geophys. Res. Lett. 22, 775–778 (1995).

U. Wegler, B.-G. Lühr, R. Snieder, A. Ratdomopurbo, Increase of shear wave velocity before the 1998 eruption of Merapi volcano (Indonesia). Geophys. Res. Lett. 33, L09303 (2006).

A. J. Hotovec-Ellis, J. Gomberg, J. E. Vidale, K. C. Creager, A continuous record of intereruption velocity change at Mount St. Helens from coda wave interferometry. J. Geophys. Res. Solid Earth 119, 2199–2214 (2014).

A. J. Hotovec-Ellis, J. E. Vidale, J. Gomberg, W. Thelen, S. C. Moran, Changes in seismic velocity during the first 14 months of the 2004–2008 eruption of Mount St. Helens, Washington. J. Geophys. Res. Solid Earth 120, 6226–6240 (2015).

T. Hirose, H. Nakahara, T. Nishimura, Combined use of repeated active shots and ambient noise to detect temporal changes in seismic velocity: Application to Sakurajima volcano, Japan. Earth Planets Space 69, 42 (2017).

M. Lisowski in Volcano Deformation: Geodetic Monitoring Techniques D. Dzurisin Ed. (Springer Praxis Books 2006) pp. 279–304.

D. J. Johnson, A. A. Eggers, M. Bagnardi, M. Battaglia, M. P. Poland, A. Miklius, Shallow magma accumulation at Kīlauea Volcano, Hawai‘i, revealed by microgravity surveys. Geology 38, 1139–1142 (2010).

G. Zhai, M. Shirzaei, Spatiotemporal model of Kīlauea’s summit magmatic system inferred from InSAR time series and geometry-free time-dependent source inversion. J. Geophys. Res. Solid Earth 121, 5425–5446 (2016).

F. W. Klein, A linear gradient crustal model for south Hawaii. Bull. Seismol. Soc. Am. 71, 1503–1510 (1981).

F. Brenguier, N. M. Shapiro, M. Campillo, A. Nercessian, V. Ferrazzini, 3-D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations. Geophys. Res. Lett. 34, L02305 (2007).

J.-F. Lénat, P. Bachèlery, O. Merle, Anatomy of Piton de la Fournaise volcano (La Réunion, Indian Ocean). Bull. Volcanol. 74, 1945–1961 (2012).

10.1029/2011GL047151

10.1093/gji/ggt043

J. Nakajima, A. Hasegawa, Tomographic imaging of seismic velocity structure in and around the Onikobe volcanic area, northeastern Japan: Implications for fluid distribution. J. Volcanol. Geotherm. Res. 127, 1–18 (2003).

D. Clarke, F. Brenguier, J.-L. Froger, N. M. Shapiro, A. Peltier, T. Staudacher, Timing of a large volcanic flank movement at Piton de la Fournaise Volcano using noise-based seismic monitoring and ground deformation measurements. Geophys. J. Int. 195, 1131–1140 (2013).

10.1785/0220130073

10.1111/j.1365-246X.2007.03374.x

10.1111/j.1365-246X.2011.05074.x

Z. Zhan, V. C. Tsai, R. W. Clayton, Spurious velocity changes caused by temporal variations in ambient noise frequency content. Geophys. J. Int. 194, 1574–1581 (2013).

S. Toda, R. S. Stein, K. Richards-Dinger, S. B. Bozkurt, Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer. J. Geophys. Res. Solid Earth 110, B05S16 (2005).

10.1029/2003JB002607

R. B. Herrmann C. J. Ammon Computer programs in seismology: Surface waves receiver functions and crustal structure (version 3.30 Saint Louis University 2004) pp. 1081–1088;www.eas.slu.edu/eqc/eqccps.html.