Relationships between rational extended thermodynamics and extended irreversible thermodynamics

David Jou1,2
1Departament de Física, Universitat Autonoma de Barcelona, Bellaterra, Catalonia, Spain
2Secció de Ciències i Tecnologia, Institut d'Estudis Catalans, Barcelona, Catalonia, Spain

Tóm tắt

We consider a few conceptual questions on extended thermodynamics, with the aim to contribute to a higher contact between rational extended thermodynamics and extended irreversible thermodynamics. Both theories take a number of fluxes as independent variables, but they differ in the formalism being used to deal with the exploitation of the second principle (rational thermodynamics in the first one and classical irreversible thermodynamics in the second one). Rational extended thermodynamics is more restricted in the range of systems to be analysed, but it is able to obtain a wider number of restrictions and deeper specifications from the second law. By contrast, extended irreversible thermodynamics is more phenomenological, its mathematical formalism is more elementary, but it may deal with a wider diversity of systems although with less detail. Further comparison and dialogue between both branches of extended thermodynamics would be useful for a fuller deployment and deepening of extended thermodynamics. Besides these two approaches, one should also consider the Hamiltonian approach, formalisms with internal variables, and more microscopic approaches, based on kinetic theory or on non-equilibrium ensemble formalisms. This article is part of the theme issue ‘Fundamental aspects of nonequilibrium thermodynamics’.

Từ khóa


Tài liệu tham khảo

Jou D, 1983, Equacions de Gibbs generalitzades i extensió de la termodinàmica de processos irreversibles (in Catalan)

10.1007/BFb0016028

Müller I, 1987, Kinetic theory and extended thermodynamics

Sienyuticz S, 1992, Extended thermodynamic systems

Eu BC, 1992, Kinetic theory and irreversible thermodynamics

10.1007/978-3-642-97430-4

10.1007/978-1-4684-0447-0

10.1007/978-94-011-1084-6

10.1007/978-94-017-2438-8

Jou D, 2000, Thermodynamics of fluids under flow

Luzzi R, 2001, Statistical foundations of irreversible thermodynamics

10.1007/978-94-017-2748-8

10.1007/978-3-662-06402-3

10.1007/3-540-32386-4

10.1007/978-3-540-74252-4

10.1007/978-3-642-11443-4

10.1007/978-3-319-13341-6

10.1007/978-3-319-27206-1

10.1088/0034-4885/51/8/002

10.1080/00107519208219139

Jou D, 1995, Advances in polymer science, 207

Nettleton RE, 1995, Applications of extended thermodynamics to chemical, rheological, and transport processes: a special Survey. Part I: Approaches and scalar rate processes, J. Non Equilib. Thermodyn., 20, 205

Nettleton RE, 1995, Applications of extended thermodynamics to chemical, rheological, and transport processes: a special Survey. Part II: Vector transport processes, shear relaxation and rheology, J. Non Equilib. Thermodyn., 20, 297

Nettleton RE, 1996, Applications of extended thermodynamics to chemical, rheological, and transport processes: a special Survey. Part III: Wave phenomena, J. Non Equilib. Thermodyn, 21, 1

10.1088/0034-4885/62/7/201

10.1137/S003613999833294X

10.1088/0034-4885/66/11/R03

Criado-Sancho M, 2003, Thermodynamics and dynamics of flowing polymer solutions and blends, Contrib. Sci., 5, 315

Mongiovì MS, 2006, Condensed matter: new research

10.1080/00107514.2011.595596

10.1140/epjh/e2014-50033-0

10.1515/caim-2016-0014

10.3390/e19010036

10.1016/j.physrep.2017.10.004

10.1016/j.physrep.2019.06.002

10.1016/j.plrev.2017.06.026

Nicolis G, 1989, Exploring complexity. An introduction

10.1016/j.ijheatmasstransfer.2014.12.045

10.1016/j.ijheatmasstransfer.2017.10.041

10.1093/imamat/hxr004

10.1063/1.4871672

10.1103/PhysRevE.96.042143

10.1103/PhysRevFluids.2.013401

10.1007/978-3-319-56934-5

10.1103/PhysRevE.56.6633

10.1002/0471727903

10.1515/9783110350951

10.1007/s11587-018-0399-3

10.1007/978-1-4612-1054-2

10.1063/1.2012462

10.1002/9783527695782

10.1016/S0378-4371(97)00530-X

10.1016/S0378-4371(96)00303-2

10.3390/e16031756

Müller I, 2005, Entropy and energy: a universal competition