Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Mối quan hệ giữa các bài toán tối ưu hóa vectơ có giá trị khoảng và bất đẳng thức biến thiên vectơ
Tóm tắt
Trong bài báo này, chúng tôi nghiên cứu một số mối quan hệ giữa các bài toán tối ưu hóa vectơ có giá trị khoảng và các bất đẳng thức biến thiên vectơ dưới giả thiết về các hàm mục tiêu LU-đặc trưng mịn và không mịn. Chúng tôi xác định các điểm hiệu quả yếu của các bài toán tối ưu hóa vectơ có giá trị khoảng và các nghiệm của các bất đẳng thức biến thiên vectơ yếu dưới giả thiết về tính LU-đặc trưng mịn và không mịn.
Từ khóa
Tài liệu tham khảo
Ansari, Q. H., & Rezaie, M. (2013). Generalized vector variational-like inequalities and vector optimization in Asplund spaces. Optimization, 62(6), 721–734.
Bhurjee, A. K., & Panda, G. (2012). Efficient solution of interval optimization problem. Mathematical Methods of Operations Research, 76, 273–288.
Chalco-Cano, Y., Lodwick, W. A., & Rufian-Lizana, A. (2013). Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative. Fuzzy Optimization and Decision Making, 3(12), 305–322.
Chen, J. W., Wan, Z., & Chao, Y. J. (2013). Nonsmooth multiobjective optimization problems and weak vector quasi variational inequalities. Computational and Applied Mathematics, 32(2), 291–301.
Clarke, F. H. (1983). Optimization and nonsmooth analysis. New York: Wiley.
Giannessi, F. (1980). Theorems of the alternative, quadratic programming and complementarity problems. In R. W. Cottle, F. Giannessi, & J. L. Lions (Eds.), Variational Inequalities and complementarity problems (pp. 151–186). New York: Wiley Press.
Giannessi, F. (2000). Vector variational inequalities and vector equilibria: Mathematical theories. Dordrecht, Holland: Kluwer Academic Publishers.
Gupta, A., Mehra, A., & Bhatia, D. (2006). Approximate convexity in vector optimization. Bulletin of the Australian Mathematical Society, 74, 207–218.
Jayswal, A., Stancu-Minasian, I., & Ahmad, I. (2011). On sufficiency and duality for a class of interval-valued programming problems. Applied Mathematics and Computation, 218, 4119–4127.
Jiang, C., Han, X., & Liu, G. P. (2008). A nonlinear interval number programming method for uncertain optimization problems. European Journal of Operational Research, 188, 1–13.
Laha, V., Al-Shamary, B., & Mishra, S. K. (2014). On nonsmooth V-invexity and vector variational- like inequalities in terms of the Michel–Penot subdifferentials. Optimization Letters, 8(5), 1675–1690.
Mishra, S. K., Wang, S. Y., & Lai, K. K. (2009). Generalized convexity and vector optimization. Berlin: Springer.
Mishra, S. K., & Laha, V. (2012). On V-r-invexity and vector variational-like inequalities. Filomat, 26(5), 1065–1073.
Mishra, S. K., & Laha, V. (2013). A note on the paper on approximately star-shaped functions and approximate vector variational inequalities. Journal of Optimization Theory and Applications, 159, 554–557.
Mishra, S. K., & Laha, V. (2013). On approximately star-shaped functions and approximate vector variational inequalities. Journal of Optimization Theory and Applications, 156, 278–293.
Mishra, S. K., & Upadhyay, B. B. (2013). Some relations between vector variational inequality problems and nonsmooth vector optimization problems using quasi efficiency. Positivity, 17(4), 1071–1083.
Moore, R. E. (1979). Method and applications of interval analysis. Philadelphia: SIAM.
Moore, R., & Lodwick, W. (2003). Interval analysis and fuzzy set theory. Fuzzy Sets and Systems, 135(1), 5–9.
Ngai, H. V., Luc, D. T., & Thera, M. (2000). Approximate convex functions. Journal of nonlinear and convex analysis, 1, 155–176.
Ruiz-Garzrón, G., Osuna-Grómez, R., & Rufirán-Lizana, A. (2004). Relationships between vector variational-like inequality and optimization problems. European Journal of Operational Research, 157, 113–119.
Stefanini, L., & Bede, B. (2009). Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Analysis, 71, 1311–1328.
Sun, Y. H., & Wang, L. S. (2013). Optimalty conditions and duality in nondifferentiable interval-valued programming. Journal of Industrial and Managenment Optimation, 9, 131–142.
Wu, H.-C. (2007). The Karush–Kuhn–Tucker optimality conditions in an optimization problem with interval-valued objective function. European Journal of Operational Research, 176, 46–59.
Wu, H.-C. (2009). The Karush–Kuhn–Tucker optimality conditions in multiobjective programming problems with interval-valued objective function. European Journal of Operational Research, 196, 49–60.
Yang, X. Q. (1997). Vector variational inequality and vector pseudolinear optimization. Journal of Optimization Theory and Applications, 95, 729–734.
Zhang, J. K., Liu, S. Y., Li, L. F., & Feng, Q. X. (2014). The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function. Optimation Letters, 8, 607–631.