Relationships between <i>Staphylococcus aureus</i> Genetic Background, Virulence Factors, <i>agr</i> Groups (Alleles), and Human Disease

Infection and Immunity - Tập 70 Số 2 - Trang 631-641 - 2002
Sophie Jarraud1, Christophe Mougel2, Jean Thioulouse3, Gérard Lina1, H. Meugnier1, Françoise Forey1, Xavier Nesme2, Jérôme Étienne1, François Vandenesch1
1Faculté de Médecine Laennec, Centre National de Référence des Toxémies à Staphylocoques, 69372 Lyon Cedex 08
2UMR CNRS 5557, Ecologie Microbienne, Université Claude Bernard-Lyon 1, UMR CNRS 5557, and INRA, 69622 Villeurbanne
3UMR CNRS 5558, Laboratoire de Biométrie et Biologie Evolutive, Université Claude Bernard-Lyon 1, 69622 Villeurbanne Cedex, France

Tóm tắt

ABSTRACT The expression of most Staphylococcus aureus virulence factors is controlled by the agr locus, which encodes a two-component signaling pathway whose activating ligand is an agr -encoded autoinducing peptide (AIP). A polymorphism in the amino acid sequence of the AIP and of its corresponding receptor divides S. aureus strains into four major groups. Within a given group, each strain produces a peptide that can activate the agr response in the other member strains, whereas the AIPs belonging to different groups are usually mutually inhibitory. We investigated a possible relationship between agr groups and human S. aureus disease by studying 198 S. aureus strains isolated from 14 asymptomatic carriers, 66 patients with suppurative infection, and 114 patients with acute toxemia. The agr group and the distribution of 24 toxin genes were analyzed by PCR, and the genetic background was determined by means of amplified fragment length polymorphism (AFLP) analysis. The isolates were relatively evenly distributed among the four agr groups, with 61 strains belonging to agr group I, 49 belonging to group II, 43 belonging to group III, and 45 belonging to group IV. Principal coordinate analysis performed on the AFLP distance matrix divided the 198 strains into three main phylogenetic groups, AF1 corresponding to strains of agr group IV, AF2 corresponding to strains of agr groups I and II, and AF3 corresponding to strains of agr group III. This indicated that the agr type was linked to the genetic background. A relationship between genetic background, agr group, and disease type was observed for several toxin-mediated diseases: for instance, agr group IV strains were associated with generalized exfoliative syndromes, and phylogenetic group AF1 strains with bullous impetigo. Among the suppurative infections, endocarditis strains mainly belonged to phylogenetic group AF2 and agr groups I and II. While these results do not show a direct role of the agr type in the type of human disease caused by S. aureus , the agr group may reflect an ancient evolutionary division of S. aureus in terms of this species’ fundamental biology.

Từ khóa


Tài liệu tham khảo

Arbuthnott, J. P., D. C. Coleman, and J. S. de Azavedo. 1990. Staphylococcal toxins in human disease. Soc. Appl. Bacteriol. Symp. Ser.19:101S–107S.

10.1086/514217

10.1128/IAI.69.1.345-352.2001

10.1126/science.1056495

De Buyser, M. L., A. Morvan, F. Grimont, and N. El Solh. 1989. Characterization of Staphylococcus species by ribosomal RNA gene restriction patterns. J. Gen. Microbiol.135:989–999.

10.1007/BF00160315

10.1111/j.1365-2427.1994.tb01741.x

10.1016/0002-9343(94)90143-0

Falkow S. 1996. The evolution of pathogenicity in Escherichia coli Shigella and Salmonella p.2723–2729. In F. C. Neidhardt R. Curtiss III J. L. Ingraham E. C. C. Lin K. B. Low B. Magasanik W. S. Reznikoff M. Riley M. Schaechter and H. E. Umbarger (ed.) Escherichia coli and Salmonella : cellular and molecular biology 2nd ed. American Society for Microbiology Washington D.C.

Falkow, S. 1997. What is a pathogen? ASM News63:359–370.

10.1093/biomet/53.3-4.325

10.1128/IAI.68.7.3983-3989.2000

Höök M. and T. J. Foster. 2000. Staphylococcal surface proteins p.386–391. In V. A. Fischetti R. P. Novick J. J. Ferretti D. A. Portnoy and J. I. Rood (ed.) Gram-positive pathogens. American Society for Microbiology Washington D.C.

10.1128/JB.182.22.6517-6522.2000

10.4049/jimmunol.166.1.669

10.1126/science.276.5321.2027

10.1016/S0140-6736(00)04403-2

10.1086/516129

10.1086/313461

10.1128/iai.63.7.2409-2417.1995

10.1093/genetics/146.3.745

Mougel C. S. Teysier C. d’Angelo K. Groud M. Neyra K. Sidi-Boumedine A. Cloeckaert M. Pelloille S. Baucheron E. Chaslus-Dancla S. Jarraud H. Meugnier F. Forey F. Vandenesch G. Lina J. Etienne J. Thioulouse C. Manceau P. Robbe R. Nalin J. Briolay and X. Nesme. Experimental and theoretical evaluation of typing methods based upon random amplification of genomic restriction fragments (AFLP) for bacterial population genetics. Genet. Sel. Evol. in press.

10.1073/pnas.87.1.225

Novick R. P. 2000. Pathogenicity factors and their regulation p.392–407. In V. A. Fischetti R. P. Novick J. J. Ferretti D. A. Portnoy and J. I. Rood (ed.) Gram-positive pathogens. American Society for Microbiology Washington D.C.

10.1128/IAI.67.2.546-553.1999

Sambrook J. E. F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual 2nd ed. Cold Spring Harbor Laboratory Press Cold Spring Harbor N.Y.

10.1073/pnas.90.10.4384

10.1023/A:1018513530268

10.1128/JB.182.20.5721-5729.2000

10.1093/nar/23.21.4407