Relationship of sequence and structure to specificity in the α-amylase family of enzymes

E. Ann MacGregor1, Štefan Janeček2, Birte Svensson3
1Department of Chemistry, University of Manitoba, Winnepeg, Manitoba R3T 2N2 Canada
2Institute of Microbiology, Slovak Academy of Sciences, Stefanikova 3, SK-81434 Bratislava, Slovakia
3#N##TAB##TAB##TAB##TAB# Carlsberg Laboratory#N##TAB##TAB##TAB#

Tóm tắt

Từ khóa


Tài liệu tham khảo

Henrissat, 1991, A classification of glycosyl hydrolases based on amino acid sequence similarities, Biochem. J., 280, 309, 10.1042/bj2800309

Henrissat, 1993, New families in the classification of glyosyl hydrolases based on amino acid sequence similarities, Biochem. J., 293, 781, 10.1042/bj2930781

Henrissat, 1996, Updating the sequence-based classification of glycosyl hydrolases, Biochem. J., 316, 695, 10.1042/bj3160695

Aghajari, 1998, Crystal structures of the psychrophilic α-amylase from Alteromonas haloplanctis in its native form and complexed with an inhibitor, Protein Sci., 7, 564, 10.1002/pro.5560070304

Machius, 1995, Crystal structure of calcium-depleted Bacillus licheniformis α-amylase at 2.2 Å resolution, J. Mol. Biol., 246, 545, 10.1006/jmbi.1994.0106

Fujimoto, 1998, Crystal structure of a catalytic-site mutant α-amylase from Bacillus subtilis complexed with maltopentaose, J. Mol. Biol., 277, 393, 10.1006/jmbi.1997.1599

Brady, 1991, Solution of the structure of Aspergillus niger acid α-amylase by combined molecular replacement and multiple isomorphous replacement methods, Acta Cryst., B47, 527, 10.1107/S0108768191001908

Matsuura, 1984, Structure and possible catalytic residues of Taka amylase A, J. Biochem., 95, 697, 10.1093/oxfordjournals.jbchem.a134659

Kadziola, 1994, Crystal and molecular structure of barley α-amylase, J. Mol. Biol., 239, 104, 10.1006/jmbi.1994.1354

Strobl, 1998, Crystal structure of yellow meal worm α-amylase at 1.64 Å resolution, J. Mol. Biol., 278, 617, 10.1006/jmbi.1998.1667

Qian, 1993, Structure and molecular model refinement of pig pancreatic α-amylase at 2.1 Å resolution, J. Mol. Biol., 231, 785, 10.1006/jmbi.1993.1326

Brayer, 1995, The structure of human pancreatic α-amylase at 1.8 Å resolution and comparisons with related enzymes, Protein Sci., 4, 1730, 10.1002/pro.5560040908

Ramasubbu, 1996, Structure of human salivary α-amylase at 1.6 Å resolution: implications for its role in the oral cavity, Acta Cryst., D52, 435

Kizaki, 1993, Polypeptide folding of Bacillus cereus ATCC7064 oligo-1,6-glucosidase revealed by 3 Å resolution X-ray analysis, J. Biochem., 113, 646, 10.1093/oxfordjournals.jbchem.a124097

Morishita, 1997, Crystal structure of a maltotetraose-forming exo-amylase from Pseudomonas stutzeri, J. Mol. Biol., 267, 661, 10.1006/jmbi.1996.0887

Katsuya, 1998, Three-dimensional structure of Pseudomonas isoamylase at 2.2 Å resolution, J. Mol. Biol., 281, 885, 10.1006/jmbi.1998.1992

Dauter, 1999, X-ray structure of Novamyl, the five-domain ‘maltogenic’ α-amylase from Bacillus stearothermophilus: maltose and acarbose complexes at 1.7 Å resolution, Biochemistry, 38, 8385, 10.1021/bi990256l

Kim, 1999, Crystal structure of a maltogenic amylase provides insights into a catalytic versatility, J. Biol. Chem., 274, 26279, 10.1074/jbc.274.37.26279

Kamitori, 1999, Crystal structure of Thermoactinonyces vulgaris R-47 α-amylase II (TVAII) hydrolyzing cyclodextrins and pullulan at 2.6 Å resolution, J. Mol. Biol., 287, 907, 10.1006/jmbi.1999.2647

Feese, 2000, Crystal structure of glycosyltrehalose trehalohydrolase from the hyperthermophilic archaeum Sulfolobus solfataricus, J. Mol. Biol., 301, 451, 10.1006/jmbi.2000.3977

L. Skov, O. Mirza, A. Henriksen, G. Potocki de Montalk, M. Remaud-Simeon, P. Sarbacal, R.-M. Willemot, P. Monsan, M. Gajhede, Structure of the glucan synthesising enzyme amylosucrase, in: International Carbohydrate Symposium 2000, Hamburg, abstract C-012.

Hofmann, 1989, Three-dimensional structure of cyclodextrin glucosyltransferase from Bacillus circulans at 3.4 Å resolution, J. Mol. Biol., 209, 793, 10.1016/0022-2836(89)90607-4

Lawson, 1994, Nucleotide sequence and X-ray structure of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 in a maltose-dependent crystal form, J. Mol. Biol., 236, 590, 10.1006/jmbi.1994.1168

Y. Matsuura, M. Kubota, Crystal structure of cyclodextrin glucanotransferase from Bacillus stearothermophilus and its carbohydrate binding sites, in: Enzyme Chemistry and Molecular Biology of Amylases and Related Enzymes, CRC Press, London, 1995, pp. 153–162.

Knegtel, 1996, Crystal structure at 2.3 Å resolution and revised nucleotide sequence of the thermostable cyclodextrin glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EMl, J. Mol. Biol., 256, 611, 10.1006/jmbi.1996.0113

Harata, 1996, X-ray structure of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. 1011. Comparison of two independent molecules at 1.8 Å resolution, Acta Cryst., D52, 1136

Przylas, 2000, Crystal structure of amylomaltase from Thermus aquaticus, a glycosyltransferase catalysing the production of large cyclic glucans, J. Mol. Biol., 296, 873, 10.1006/jmbi.1999.3503

MacGregor, 1989, A super-secondary structure predicted to be common to several α-1,4-d-glucan-cleaving enzymes, Biochem. J., 259, 145, 10.1042/bj2590145

Jespersen, 1991, Comparison of the domain-level organization of starch hydrolases and related enzymes, Biochem. J., 280, 51, 10.1042/bj2800051

Jespersen, 1993, Starch- and glycogen-debranching and branching enzymes: prediction of structural feature of the catalytic (β/α)8-barrel domain and evolutionary relationship to other amylolytic enzymes, J. Protein Chem., 12, 791, 10.1007/BF01024938

Janecek, 1997, Domain evolution in the α-amylase family, J. Mol. Evol., 45, 322, 10.1007/PL00006236

Park, 2000, Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the α-amylase family, Biochim. Biophys. Acta, 1478, 165, 10.1016/S0167-4838(00)00041-8

Janecek, 1997, α-Amylase family: molecular biology and evolution, Prog. Biophys. Mol. Biol., 67, 67, 10.1016/S0079-6107(97)00015-1

S. Janecek, Structural features and evolutionary relationships in the α-amylase family, in: M. Ohnishi, T. Hayashi, S. Ishijima, T. Kuriki (Eds.), Glycoenzymes, Japan Scientific Societies Press, Tokyo, 2000, pp. 19–54.

P.M. Coutinho, B. Henrissat, Carbohydrate-active Enzymes server, at URL: http://afmb.cnrs-mrs.fr/∼pedro/CAZY/db.html (1999)

MacGregor, 1996, A circularly permuted α-amylase-type α/β-barrel structure in glucan-synthesizing glucosyltransferases, FEBS Lett., 378, 263, 10.1016/0014-5793(95)01428-4

Svensson, 1994, Protein engineering in the α-amylase family: catalytic mechanism, substrate specificity, and stability, Plant Mol. Biol., 25, 141, 10.1007/BF00023233

G. Davies, M.L. Sinnott, S.G. Withers, Glycosyl transfer, in: M. Sinnott (Ed.), Comprehensive Biological Catalysis, Academic Press, New York, 1998, pp. 119–208.

Ly, 1999, Mutagenesis of glycosidases, Annu. Rev. Biochem., 68, 487, 10.1146/annurev.biochem.68.1.487

Uitdehaag, 1999, X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the α-amylase family, Nat. Struct. Biol., 6, 432, 10.1038/8235

Uitdehaag, 1999, The cyclization mechanism of cyclodextrin glycosyltransferase (CGTase) as revealed by a γ-cyclodextrin-CGTase complex at 1.8 Å resolution, J. Biol. Chem., 274, 34868, 10.1074/jbc.274.49.34868

Janecek, 1995, Characteristic differences in the primary structure allow discrimination of cyclodextrin glucanotransferases from α-amylases, Biochem. J., 305, 685, 10.1042/bj3050685

Zhou, 1989, Nucleotide sequence of the maltotetrahydrolase gene from Pseudomonas saccharophila, FEBS Lett., 255, 37, 10.1016/0014-5793(89)81056-7

Candussio, 1990, Biochemical and genetic analysis of a maltopentaose-producing amylase from an alkalophilic Gram-positive bacterium, Eur. J. Biochem., 191, 177, 10.1111/j.1432-1033.1990.tb19108.x

Shirokizawa, 1990, Nucleotide sequence of the G6-amylase gene from alkalophilic Bacillus sp. H-167, FEMS Microbiol. Lett., 70, 131

Yamamoto, 2000, Alteration of product specificity of cyclodextrin glucanotransferase from Thermococcus sp. B1001 by site-directed mutagenesis, J. Biosci. Bioeng., 89, 206, 10.1016/S1389-1723(00)88740-X

Geber, 1992, Cloning and characterization of a Candida albicans maltase gene involved in sucrose utilization, J. Bacteriol., 174, 6992, 10.1128/jb.174.21.6992-6996.1992

Strokopytov, 1996, Structure of cyclodextrin glycosyltransferase complexed with a maltononaose inhibitor at 2.6 Å resolution. Implications for product specificity, Biochemistry, 35, 4241, 10.1021/bi952339h

Qian, 1994, The active center of a mammalian α-amylase. Structure of the complex of a pancreatic α-amylase with a carbohydrate inhibitor refined to 2.2 Å resolution, Biochemistry, 33, 6284, 10.1021/bi00186a031

Nahoum, 2000, Crystal structures of human pancreatic α-amylase in complex with carbohydrate and proteinaceous inhibitors, Biochem. J., 346, 201, 10.1042/0264-6021:3460201

André, 1999, Amylose chain behavior in an interacting context III. Complete occupancy of the AMY2 barley α-amylase cleft and comparison with biochemical data, Biopolymers, 50, 751, 10.1002/(SICI)1097-0282(199912)50:7<751::AID-BIP8>3.0.CO;2-5

Parsiegla, 1998, Substrate binding to a cyclodextrin glycosyltransferase and mutations increasing the γ-cyclodextrin product, Eur. J. Biochem., 255, 710, 10.1046/j.1432-1327.1998.2550710.x

Schmidt, 1998, Structure of cyclodextrin glycosyltransferase complexed with a derivative of its main product β-cyclodextrin, Biochemistry, 37, 5909, 10.1021/bi9729918

Brzozowski, 1997, Structure of the Aspergillus oryzae α-amylase complexed with the inhibitor acarbose at 2.0 Å resolution, Biochemistry, 36, 10837, 10.1021/bi970539i

Janecek, 1999, Close evolutionary relatedness of α-amylases from archaea and plants, J. Mol. Evol., 48, 421, 10.1007/PL00006486

Hong, 1986, Primary structure of the maltase gene of the MAL6 locus of Saccharomyces carlsbergensis, Gene, 41, 75, 10.1016/0378-1119(86)90269-6

K.R. Piper, B. von Bodman, D.M. Cook, I. Hwang, H. Kim, S.K. Farrand, GenBank data base, accession no. AF010180 (1998).

Fournier, 1994, Natural instability of Agrobacterium vitis Ti plasmid due to unusual duplication of a 2.3-kb DNA fragment, Mol. Plant Microbe Interact., 7, 164, 10.1094/MPMI-7-0164

H. Aiba, T. Baba, K. Fujita, K. Hayashi, T. Inada, K. Isono, T. Itoh, H. Kasai, K. Kashimoto, S. Kimura, M. Kitakawa, M. Kitagawa, K. Makino, T. Miki, K. Mizobuchi, H. Mori, T. Mori, K. Motomura, S. Nakade, Y. Nakamura, H. Nashimoto, Y. Nishio, T. Oshima, N. Saito, G. Sampei, Y. Seki, S. Sivasundaram, H. Tagami, J. Takeda, K. Takemoto, Y. Takeuchi, C. Wada, Y. Yamamoto, T. Horiuchi, GenBank data base, accession no. D90768 (1996).

R.N. Trethewey, A.R. Fernie, A. Bachmann, H. Fleischer-Notter, P. Geigenberger, L. Willmitzer, GenBank data base, accession no. AF158367 (1999).

Christophersen, 1998, Enzymic characterization of Novamyl, a thermostable α-amylase, Starch, 50, 39, 10.1002/(SICI)1521-379X(199801)50:1<39::AID-STAR39>3.0.CO;2-S

Tables of enzymes studied are given at URL: http://nic.savba.sk/∼umikstef/bba

Yoshioka, 1997, Crystal structures of a mutant maltotetraose-forming exo-amylase cocrystallized with maltopentaose, J. Mol. Biol., 271, 619, 10.1006/jmbi.1997.1222

Kadziola, 1998, Molecular structure of a barley α-amylase-inhibitor complex: implications for starch binding and catalysis, J. Mol. Biol., 278, 205, 10.1006/jmbi.1998.1683

Y.W. Kim, T.J. Kim, J.W. Kim, K.H. Park, GenBank data base, accession no. AF116581 (1998).

Diderichsen, 1988, Cloning of a maltogenic α-amylase from Bacillus stearothermophilus, FEMS Microbiol. Lett., 56, 53, 10.1111/j.1574-6968.1988.tb03149.x

A.P. Kelly, GenBank data base, accession no. Z22520 (1993).

Cha, 1998, Molecular and enzymic characterization of a maltogenic amylase that hydrolyzes and transglycosylates acarbose, Eur. J. Biochem., 253, 251, 10.1046/j.1432-1327.1998.2530251.x

H.Y. Cho, T.J. Kim, J.W. Kim, K.H. Park, GenBank data base, accession no. AF115340 (1998).

T.J. Kim, J.W. Kim, K.H. Park, GenBank data base, accession no. AF060204 (1998).

Kim, 1992, Catalytic properties of the cloned amylase from Bacillus licheniformis, J. Biol. Chem., 267, 22108, 10.1016/S0021-9258(18)41642-0

Yamane, 1984, Changes in the properties and molecular weights of Bacillus subtilis M-type and N-type α-amylases resulting from a spontaneous deletion, J. Biochem., 96, 1849, 10.1093/oxfordjournals.jbchem.a135019

Kuriki, 1989, Nucleotide sequence of the neopullulanase gene from Bacillus stearothermophilus, J. Gen. Microbiol., 135, 1521

Tonozuka, 1995, Comparison of primary structures and subsite specificities of two pullulan-hydrolyzing α-amylases, TVA I and TVA II, from Thermoactinomyces vulgaris R-47, Biochim. Biophys. Acta, 1252, 35, 10.1016/0167-4838(95)00101-Y

Robyt, 1970, The action pattern of porcine pancreatic α-amylase in relationship to the substrate binding site of the enzyme, J. Biol. Chem., 245, 3917, 10.1016/S0021-9258(18)62937-0

Suganuma, 1978, A study of the mechanism of action of Taka amylase A on linear oligosaccharides by product analysis and computer simulation, J. Biochem., 84, 293, 10.1093/oxfordjournals.jbchem.a132130

MacGregor, 1992, The action of germinated barley α-amylases on linear maltodextrins, Carbohydr. Res., 227, 301, 10.1016/0008-6215(92)85080-J

N. Aghajari, R. Haser, Reactivity of psychrophilic α-amylase in the crystalline state, in: H.J. Gilbert, G.J. Davies, B. Henrissat, B. Svensson (Eds.), Proceedings of Recent Advances in Carbohydrate Bioengineering, Newcastle, Royal Society of Chemistry, 1999, pp. 175–185.

Robyt, 1967, Multiple attack hypothesis of α-amylase action: action of porcine pancreatic, human salivary, and Aspergillus oryzae α-amylases, Arch. Biochem. Biophys., 122, 8, 10.1016/0003-9861(67)90118-X

Machius, 1998, Carbohydrate and protein-based inhibitors of porcine pancreatic α-amylase: structure analysis and comparison of their binding characteristics, J. Mol. Biol., 260, 409, 10.1006/jmbi.1996.0410

Machius, 1998, Activation of Bacillus licheniformis α-amylase through a disorder→order transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad, Structure, 6, 281, 10.1016/S0969-2126(98)00032-X

Bird, 1954, The action of some α-amylases on amylose, Biochem. J., 56, 86, 10.1042/bj0560086

Janecek, 1998, Sequence of archaeal Methanococcus jannaschii α-amylase contains features of families 13 and 57 of glycosyl hydrolases: a trace of their common ancestor?, Folia Microbiol., 43, 123, 10.1007/BF02816496

van der Veen, 2000, Rational design of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 to increase α-cyclodextrin production, J. Mol. Biol., 296, 1027, 10.1006/jmbi.2000.3528

Penninga, 1996, The raw starch binding domain of cyclodextrin glycosyltransferase from Bacillus circulans strain 251, J. Biol. Chem., 271, 32777, 10.1074/jbc.271.51.32777

Wind, 1998, Engineering of factors determining α-amylase and cyclodextrin glycosyltransferase specificity in the cyclodextrin glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1, Eur. J. Biochem., 253, 598, 10.1046/j.1432-1327.1998.2530598.x

Mosi, 1997, Trapping and characterization of the reaction intermediate in cyclodextrin glycosyltransferase by use of activated substrates and a mutant enzyme, Biochemistry, 36, 9927, 10.1021/bi970618u

Yamamoto, 2000, Alteration of product specificity of cyclodextrin glucanotransferase from Thermococcus sp. B1001 by site-directed mutagenesis, J. Biosci. Bioeng., 89, 206, 10.1016/S1389-1723(00)88740-X

Burton, 1995, Starch branching enzymes belonging to distinct enzyme families are differentially expressed during pea embryo development, Plant J., 7, 3, 10.1046/j.1365-313X.1995.07010003.x

Kuriki, 1997, Construction of chimeric enzymes out of maize endosperm branching enzymes I and II, J. Biol. Chem., 272, 28999, 10.1074/jbc.272.46.28999

Hong, 2000, Localization of C-terminal domains required for the maximal activity or for determination of substrate preference of maize branching enzymes, Arch. Biochem. Biophys., 378, 349, 10.1006/abbi.2000.1845

Binderup, 1998, Glutamate-459 is important for Escherichia coli branching enzyme activity, Biochemistry, 37, 9033, 10.1021/bi980199g

Braun, 1996, Identification of A549 as the catalytic nucleophile of glycogen-debranching enzyme via trapping of the glycosyl-enzyme intermediate, Biochemistry, 35, 5458, 10.1021/bi9526488

Hatada, 1996, Amino acid sequence and molecular structure of an alkaline amylopullulanase from Bacillus that hydrolyses α-1,4 and α-1,6 linkages in polysaccharides at different active sites, J. Biol. Chem., 271, 24075, 10.1074/jbc.271.39.24075

Ara, 1995, An alkaline amylopullanase from alkalophilic Bacillus sp. KSM 1378; kinetic evidence for two independent active sites for the α-1,4 and α-1,6 hydrolytic reactions, Biosci. Biotechnol. Biochem., 59, 662, 10.1271/bbb.59.662

Ara, 1996, Separation of functional domains for the α-1,4 and α-1,6 hydrolytic activities of a Bacillus amylopullulanase by limited proteolysis with papain, Biosci. Biotechnol. Biochem., 60, 634, 10.1271/bbb.60.634

Kim, 1994, Specific detection of pullulanase type I in polyacrylamide gels, FEMS Microbiol. Lett., 116, 327, 10.1111/j.1574-6968.1994.tb06723.x

Kuriki, 1991, Analysis of the active center of Bacillus stearothermophilus neopullulanase, J. Bacteriol., 173, 6147, 10.1128/jb.173.19.6147-6152.1991

Ibuka, 1998, Conversion of neopullulanase-α-amylase from Thermoactinomyces vulgaris R-47 into an amylopullulanase-type enzyme, J. Biochem., 123, 275, 10.1093/oxfordjournals.jbchem.a021933

Kim, 2000, Role of the glutamate 332 residue in the transglycosylation activity of Thermus maltogenic amylase, Biochemistry, 39, 6773, 10.1021/bi992575i

Kitahata, 1985, Hydrolytic action on various maltosides by an enzyme from Bacillus coagulans, Carbohydr. Res., 137, 217, 10.1016/0008-6215(85)85162-4

Kim, 1999, Modes of action of acarbose hydrolysis and transglycosylation catalysed by a thermo-stable maltogenic amylase, the gene for which was cloned from a Thermus strain, Appl. Environ. Microbiol., 65, 1644, 10.1128/AEM.65.4.1644-1651.1999

Cho, 2000, Molecular characterization of a dimeric intracellular maltogenic amylase of Bacillus subtilis SUH4-2, Biochim. Biophys. Acta, 1478, 333, 10.1016/S0167-4838(00)00037-6

F.C. Denizot, GenBank data base, accession no. Z94043 (1997).

Igarashi, 1992, Nucleotide sequence of the gene that encodes a neopullulanase from an alkalophilic Bacillus, Biosci. Biotechnol. Biochem., 56, 514, 10.1271/bbb.56.514

Matzke, 2000, Gene cloning, nucleotide sequence and biochemical properties of a cytoplasmic cyclomaltodextrinase (neopullulanase) from Alicyclobacillus acidocaldarius, reclassification of a group of enzymes, FEMS Microbiol. Lett., 183, 55, 10.1111/j.1574-6968.2000.tb08933.x

Oguma, 1993, Cloning and sequence analysis of the cyclomaltodextrinase gene from Bacillus sphaericus and expression in Escherichia coli cells, Appl. Microbiol. Biotechnol., 39, 197, 10.1007/BF00228606

Kashiwabara, 1999, Three domains comprised in thermostable molecular weight 54,000 pullulanase of type I from Bacillus flavocaldarius KP1228, Biosci. Biotechnol. Biochem., 63, 1736, 10.1271/bbb.63.1736

Mathupala, 1990, Substrate competition and specificity at the active site of amylopullulanase from Clostridium thermohydrosulfuricum, Biochem. Biophys. Res. Commun., 166, 126, 10.1016/0006-291X(90)91920-N

Peist, 1996, The Mal-T dependent and malZ-encoded maltodextrin glucosidase of Escherichia coli can be converted into a dextrinyl transferase by a single mutation, J. Biol. Chem., 271, 10681, 10.1074/jbc.271.18.10681

Yamamoto, 1990, Nucleotide sequence of alkalophilic Bacillus oligo-1,6-glucosidase gene and the properties of the gene product by Escherichia coli HB101, Denpun Kagaku, 37, 137

Nakao, 1994, Purification and characterization of a Bacillus sp. SAM 1606 thermo-stable α-glucosidase with transglucosylation activity, Appl. Microbiol. Biotechnol., 41, 337, 10.1007/BF00221229

Nakao, 1994, Structure and expression of a gene coding for a thermostable α-glucosidase with a broad substrate specificity from Bacillus sp. SAM 1606, Eur. J. Biochem., 220, 293, 10.1111/j.1432-1033.1994.tb18625.x

Inohara-Ochiai, 1997, Altering substrate specificity of Bacillus sp. SAM 1606 α-glucosidase by comparative site-specific mutagenesis, J. Biol. Chem., 272, 1601, 10.1074/jbc.272.3.1601

Suzuki, 1987, Purification and characterization of extremely thermostable exo-oligo-1,6-glucosidase from a caldoactive Bacillus sp. KP1228, Starch, 39, 17, 10.1002/star.19870390106

Kashiwabara, 1998, Clustered proline residues around the active-site cleft in thermostable oligo-1,6-glucosidase of Bacillus flavocaldarius KP1228, Biosci. Biotechnol. Biochem., 62, 1093, 10.1271/bbb.62.1093

O. Nashiru, S.Y. Lee, D.S. Lee, GenBank data base, accession no. AF096282 (1998).

Takii, 1996, Bacillus stearothermophilus ATCC12016 α-glucosidase specific for α-1,4 bonds of maltosaccharides and α-glucans shows high amino acid sequence similarities to seven α-d-glucohydrolases with different substrate specificity, Appl. Microbiol. Biotechnol., 44, 629, 10.1007/BF00172496

Devulapalle, 1997, Knowledge-based model of a glucosyl-transferase from the oral bacterial group of mutans streptococci, Protein Sci., 6, 2489, 10.1002/pro.5560061201

Monchois, 2000, Involvement of Gln937 of Streptococcus downei GTF-I glucansucrase in transition-state stabilization, Eur. J. Biochem., 267, 4127, 10.1046/j.1432-1327.2000.01448.x

Declerck, 1997, Hyperthermostable mutants of Bacillus licheniformis α-amylase: thermodynamic studies and structural interpretation, Prot. Eng., 10, 541, 10.1093/protein/10.5.541

Nielsen, 1999, Electrostatics in the active site of an α-amylase, Eur. J. Biochem., 264, 816, 10.1046/j.1432-1327.1999.00664.x

Declerck, 2000, Probing structural determinants specifying high thermostability in Bacillus licheniformis α-amylase, J. Mol. Biol., 301, 1041, 10.1006/jmbi.2000.4025

Ishii, 2000, Crystal structure of alkalophilic asparagine 233-replaced cyclodextrin glucanotransferase complexed with an inhibitor, acarbose, at 2.0 A resolution, J. Biochem., 127, 383, 10.1093/oxfordjournals.jbchem.a022619

Kuriki, 1996, Controlling substrate preference and transglycosylation activity of neopullulanase by manipulating steric constraint and hydrophobicity in active center, J. Biol. Chem., 271, 17321, 10.1074/jbc.271.29.17321

T. Tonuzuka, Y. Sakano, Crystal structure of the pullulan-hydrolyzing α-amylase from Thermoactinomyces vulgaris R-47, and manipulation of substrate specificities, in: H.J. Gilbert, G.J. Davies, B. Henrissat, B. Svensson (Eds.), Recent Advances in Carbohydrate Bioengineering, Newcastle, Royal Society of Chemistry, 1999, pp. 150–158.

Matsui, 1991, An increase in transglycosylation activity of Saccharomycopsis α-amylase altered by site-directed mutagenesis, Biochim. Biophys. Acta, 1077, 416, 10.1016/0167-4838(91)90560-M

Matsui, 1992, Alteration in bond-cleavage pattern in the hydrolysis catalyzed by Saccharomycopsis α-amylase altered by site-directed mutagenesis, Biochemistry, 31, 5232, 10.1021/bi00137a019

Matsui, 1997, Improved activity and modulated action pattern obtained by random mutagenesis at the fourth β-α loop involved in substrate binding to the catalytic (β/α)8-barrel domain of barley α-amylase 1, J. Biol. Chem., 272, 22456, 10.1074/jbc.272.36.22456

Svensson, 1999, Studies on structure, function, and protein engineering of starch-degrading enzymes, J. Appl. Glycosci., 46, 49, 10.5458/jag.46.49

B. Svensson, K.S. Bak-Jensen, H. Mori, J. Sauer, M.T. Jensen, B. Kramhøft, T.E. Gottschalk, T. Christensen, B.W. Sigurskjold, N. Aghajai, R. Haser, N. Payre, S. Cottaz, H. Driguez, The engineering of specificity and stability in selected starch degrading enzymes, in: H.J. Gilbert, G.J. Davies, B. Henrissat, B. Svensson (Eds.), Recent Advances in Carbohydrate Bioengineering, Newcastle, Royal Society of Chemistry, 1999, pp. 274–281.

Suzuki, 1989, Amino acid residues stabilizing a Bacillus α-amylase against irreversible thermodenaturation, J. Biol. Chem., 264, 18933, 10.1016/S0021-9258(19)47247-5

Conrad, 1995, Hybrid Bacillus amyloquefaciens X Bacillus licheniformis α-amylases; construction, properties and sequence determinants, Eur. J. Biochem., 230, 481

Rodenburg, 1994, Domain B protruding at the third β-strand of the α/β-barrel in barley α-amylase confers distinct isozyme-specific properties, Eur. J. Biochem., 221, 277, 10.1111/j.1432-1033.1994.tb18739.x

Juge, 1995, Isozyme hybrids within the protruding third loop domain of the barley α-amylase (β/α)8-barrel. Implication for BASI sensitivity and substrate affinity, FEBS Lett., 363, 299, 10.1016/0014-5793(95)00291-G

Beier, 2000, Conversion of the maltogenic α-amylase Novamyl into a CGTase, Protein Eng., 13, 509, 10.1093/protein/13.7.509

Sarcabal, 2000, Identification of key amino acid residues in Neisseria polysaccharea amylosucrase, FEBS Lett., 474, 33, 10.1016/S0014-5793(00)01567-2

Arguello-Morales, 2000, Sequence analysis of the gene encoding alternansucrase from Leuconostoc mesenteroides NRRLB-1355, FEMS Microbiol. Lett., 182, 81, 10.1016/S0378-1097(99)00572-8