Relationship of arousal to circadian anticipatory behavior: ventromedial hypothalamus: one node in a hunger–arousal network

European Journal of Neuroscience - Tập 30 Số 9 - Trang 1730-1738 - 2009
Ana Cristina de Medeiros Ribeiro1,2, Joseph LeSauter3, Christophe Dupré2, Donald W. Pfaff2
1Division of Natural Sciences, College of Mount Saint Vincent, Bronx, NY, USA
2Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10065, USA
3Department of Psychology, Barnard College, New York, NY, USA

Tóm tắt

Abstract

The mechanisms by which animals adapt to an ever‐changing environment have long fascinated scientists. Different forces, conveying information regarding various aspects of the internal and external environment, interact with each other to modulate behavioral arousal. These forces can act in concert or, at times, in opposite directions. These signals eventually converge and are integrated to influence a common arousal pathway which, depending on all the information received from the environment, supports the activation of the most appropriate behavioral response. In this review we propose that the ventromedial hypothalamic nucleus (VMN) is part of the circuitry that controls food anticipation. It is the first nucleus activated when there is a change in the time of food availability, silencing of VMN ghrelin receptors decreases food‐anticipatory activity (FAA) and, although lesions of the VMN do not abolish FAA, parts of the response are often altered. In proposing this model it is not our intention to exclude parallel, redundant and possibly interacting pathways that may ultimately communicate with, or work in concert with, the proposed network, but rather to describe the neuroanatomical requirements for this circuit and to illustrate how the VMN is strategically placed and connected to mediate this complex behavioral adaptation.

Từ khóa


Tài liệu tham khảo

10.1152/ajpregu.00216.2003

10.1016/j.neuroscience.2006.08.064

10.1126/science.157.3796.1574

10.1523/JNEUROSCI.2606-06.2006

10.1007/BF00373626

10.1111/j.1471-4159.1991.tb11439.x

Borbely A.A., 1982, A two process model of sleep regulation, Hum Neurobiol, 1, 195

10.1016/0361-9230(94)00177-3

10.1016/0091-3057(94)00266-L

10.1152/ajpregu.00207.2007

10.1002/cne.903480103

10.1016/S0361-9230(96)00439-X

10.1210/en.2003-1596

10.1016/j.brainres.2005.06.080

Choi S., 1998, Hypothalamic ventromedial nuclei amplify circadian rhythms: do they contain a food‐entrained endogenous oscillator?, J. Neurosci., 18, 3843, 10.1523/JNEUROSCI.18-10-03843.1998

10.1016/S0167-0115(01)00357-3

10.1016/0031-9384(90)90076-G

10.1002/cne.901690206

10.1101/gad.183500

10.1053/gast.2002.35954

10.1210/en.2004-1240

10.1097/00001756-200208270-00007

10.1177/074873049801300507

10.1034/j.1601-183X.2003.00005.x

10.1016/j.neuron.2005.12.021

10.1210/en.2005-0973

10.1677/joe.0.160R007

10.1016/S0304-3940(98)00927-6

10.1111/j.1460-9568.2007.05893.x

10.1016/j.jphysparis.2007.05.002

10.1210/en.2007-0008

10.1523/JNEUROSCI.0749-08.2008

10.1126/science.1153277

10.1016/0361-9230(87)90208-5

10.1038/nn1651

10.1016/j.mce.2009.02.018

10.1016/S0169-328X(97)00071-5

10.2337/diabetes.48.2.267

10.1016/S0167-0115(00)00199-3

10.1016/S0306-4522(01)00033-1

10.1002/ar.1090780203

10.1007/s00213-003-1735-0

Honma K.I., 1984, Feeding‐associated corticosterone peak in rats under various feeding cycles, Am. J. Physiol., 246, R721

10.1016/0031-9384(87)90011-4

10.1126/science.273.5277.974

10.1007/s11064-008-9661-5

Ibuka N., 1980, Sleep‐wakefulness rhythms in mice after suprachiasmatic nucleus lesions, Waking Sleeping, 4, 167

10.1016/S0006-8993(99)01131-2

10.1016/0006-8993(82)90967-2

10.1016/S0167-0115(99)00102-0

10.1016/j.cmet.2006.08.003

Jones B.E., 2004, Paradoxical REM sleep promoting and permitting neuronal networks, Arch. Ital. Biol., 142, 379

10.1016/j.brainres.2008.02.026

10.1002/cne.20432

10.1126/science.1115360

10.1210/endo-106-3-649

10.1002/cne.901830408

10.1152/ajpregu.00874.2005

10.1177/0748730407307804

10.1016/j.neuroscience.2006.10.049

10.1073/pnas.0906426106

10.1016/0306-4522(90)90251-X

10.1111/j.1460-9568.2004.03287.x

10.1023/B:DDAS.0000030081.91006.86

10.1016/j.cmet.2008.03.006

10.1097/00001756-199611040-00075

10.1006/hbeh.2000.1584

10.1006/bbrc.1998.9750

10.1016/0031-9384(80)90055-4

10.1210/endo.143.2.8652

10.1016/j.regpep.2003.10.003

10.2337/diabetes.48.9.1801

10.1016/j.bbr.2004.08.016

10.1016/j.bbr.2004.09.010

10.1523/JNEUROSCI.3171-04.2004

10.1016/0006-8993(73)90489-7

10.1016/0031-9384(85)90070-8

10.1093/sleep/6.3.217

10.1016/S0006-8993(03)02755-0

10.1126/science.1161284

10.1186/1740-3391-7-3

10.1002/1096-9861(20010115)429:3<469::AID-CNE8>3.0.CO;2-#

10.1152/ajpendo.2001.281.4.E649

10.1002/(SICI)1096-9861(19971222)389:3<508::AID-CNE11>3.0.CO;2-H

10.1152/jn.1978.41.6.1580

10.1111/j.1460-9568.2009.06697.x

Morris J.S., 2001, Involvement of human amygdala and orbitofrontal cortex in hunger‐enhanced memory for food stimuli, J. Neurosci., 21, 5304, 10.1523/JNEUROSCI.21-14-05304.2001

10.1016/0013-4694(49)90219-9

10.1111/j.1460-9568.2004.03255.x

10.1016/S0006-8993(00)02555-5

10.1210/en.2009-0409

10.1016/0006-8993(82)90295-5

10.1126/science.143.3605.484

10.1016/0361-9230(81)90039-3

10.1016/S0169-328X(00)00194-7

10.1371/journal.pone.0004860

Pfaff D., 2005, Brain Arousal and Information Theory: Neural and Genetic Mechanisms

10.1016/j.brainres.2008.06.039

10.1037/0735-7044.117.6.1243

10.1073/pnas.0710096104

10.1210/endo.139.10.6332

Saito M.&Shimazu T.(1982)Effects of hypothalamic lesions on an anticipatory response to feeding. InHoebel B.G.&Novin D.(Eds) The Neural Basis of Feeding and Reward.Haer Institute Brunswick pp.115–121.

Sakuma Y., 1976, [Antidromic identification of hypothalamic neurosecretory cells which participate in the anterior pituitary control (author’s transl)], Nippon Naibunpi Gakkai Zasshi, 52, 1

10.1016/S0092-8674(00)80949-6

10.1677/JOE-06-0146

10.1002/cne.901690403

10.2527/2001.7961573x

10.1152/ajpgi.00064.2004

10.1126/science.271.5246.216

10.1210/endo-108-2-605

10.1016/0006-8993(87)91508-3

10.1016/0006-8993(87)90626-3

10.1016/0306-4522(92)90392-F

10.1016/0006-8993(87)91049-3

10.1016/0306-4522(87)90120-5

10.1016/S0166-4328(05)80096-8

10.2337/diabetes.54.1.15

10.1016/0031-9384(91)90584-B

10.1038/nn1550

10.1073/pnas.0902063106

10.1016/j.neures.2006.05.001

10.1111/j.1749-6632.1969.tb12910.x

10.1016/0006-8993(87)90995-4

10.1073/pnas.96.8.4569

10.1016/0304-3940(83)90420-2

10.1016/S0014-5793(98)01266-6

10.1016/S0167-0115(02)00012-5

10.1210/endo-104-2-350

10.1172/JCI8695

10.1016/S0896-6273(03)00331-3

10.1126/science.288.5466.682

10.1016/j.peptides.2008.01.021

10.1016/S0196-9781(97)00263-5

10.1002/cne.20859

10.1016/j.regpep.2004.07.010

10.1152/jn.00337.2007

10.1002/cne.20823