Relationship between tetrahedron shape measures
Tóm tắt
Từ khóa
Tài liệu tham khảo
K. E. Atkinson,An Introduction to Numerical Analysis Wiley, New York, 1978.
R. E. Bank,PLTMG: A Software Package for Solving Elliptic Partial Differential Equations: Users' Guide 6.0 SIAM, Philadelphia, 1990.
M. Bern, D. Eppstein, and J. Gilbert,Provably good mesh generation, Proc. IEEE 31st Annual Symposium on Foundations of Computer Science, 1990, pp. 231–241.
W. H. Beyer,CRC Standard Mathematical Tables 26th edition, CRC Press, Boca Raton, Florida, 1981.
J. C. Cavendish, D. A. Field, and W. H. Frey,An approach to automatic three-dimensional finite element mesh generation Intern. J. Num. Meth. Eng., 21 (1985), pp. 329–347.
D. A. Field,Implementing Watson's algorithm in three dimensions, Proc. 2nd ACM Symposium on Computational Geometry, 1986, pp. 246–259.
J. W. Gaddum,The sums of the dihedral and trihedral angles in a tetrahedron Amer. Math. Monthly, 59 (1952), pp. 370–371.
B. Joe,Three-dimensional triangulations from local transformations SIAM J. Sci. Stat. Comput., 10 (1989), pp. 718–741.
B. Joe,Delaunay versus max-min solid angle triangulations for three-dimensional mesh generation Intern. J. Num. Meth. Eng., 31 (1991), pp. 987–997.
B. Joe,Tetrahedral mesh generation in polyhedral regions based on convex polyhedron decompositions Intern. J. Num. Meth. Eng., 37(1994), pp. 693–713.
C. L. Lawson,Software for C 1 surface interpolation in Mathematical Software III, J. R. Rice, ed., Academic Press, New York, 1977, pp. 161–194.
A. Liu and B. Joe,On the shape of tetrahedra from bisection. To appear in Mathematics of Computation.
S. H. Lo,Volume discretization into tetrahedra—I. Verification and orientation of boundary surfaces Computer & Structures, 39 (1991), pp. 493–500.
S. H. Lo,Volume discretization into tetrahedron—II. 3D triangulation by advancing front approach Computer & Structures, 39 (1991), pp. 501–511.
D. S. Mitrinovic, J. E. Pecaric, and V. Volenec,Recent Advances in Geometric Inequalities Kluwer Academic Publishers, Dordrecht, The Netherlands, 1989.
M.-C. Rivara and C. Levin,A 3-D refinement algorithm suitable for adaptive and multi-grid techniques Comm. Appl. Num. Meth., 8 (1992), pp. 281–290.
I. Todhunter and J. G. Leathem,Spherical Trigonometry Macmillan, London, 1949.