Relationship between grip strength and bone mineral density in healthy Hong Kong adolescents

Dicken Chan1, W. T. K. Lee2, Dominic Lo1, Jason Leung1, Anthony Kwok1, Ping‐Chung Leung1
1Jockey Club Centre for Osteoporosis Care and Control, The Chinese University of Hong Kong, Rm314, 3/F, School of Public Health, Prince of Wales Hospital, Shatin, Hong Kong, China
2Division of Nutritional Sciences, Faculty of Health & Medical Sciences, University of Surrey, Surrey, United Kingdom

Tóm tắt

Từ khóa


Tài liệu tham khảo

Lynn HS, Lau EM, Au B, Leung PC (2005) Bone mineral density reference norms for Hong Kong Chinese. Osteoporosis Int 16(12):1663–1668

Matkovic V, Jelic T, Wardlaw GM, Ilich JZ, Goel PK, Wright JK, Andon MB, Smith KT, Heaney RP (1994) Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest 93(2):799–808

Forwood MR, Baxter-Jones AD, Beck TJ, Mirwald RL, Howard A, Bailey DA (2006) Physical activity and strength of the femoral neck during the adolescent growth spurt: a longitudinal analysis. Bone 38(4):576–583

Ozgocmen S, Karaoglan B, Cimen OB, Yorgancioglu ZR (2000) Relation between grip strength and hand bone mineral density in healthy women aged 30–70. Singap Med J 41(6):268–270

Di Monaco M, Di Monaco R, Manca M, Cavanna A (2000) Handgrip strength is an independent predictor of distal radius bone mineral density in postmenopausal women. Clin Rheumatol 19(6):473–476

Bevier WC, Wiswell RA, Pyka G, Kozak KC, Newhall KM, Marcus R (1989) Relationship of body composition, muscle strength, and aerobic capacity to bone mineral density in older men and women. J Bone Miner Res 4(3):421–432

Snow-Harter C, Bouxsein M, Lewis B, Charette S, Weinstein P, Marcus R (1990) Muscle strength as a predictor of bone mineral density in young women. J Bone Miner Res 5(6):589–595

Sahin G, Duce MN, Milcan A, Bagis S, Cimen OB, Cimen B, Erdogan C (2002) Bone mineral density and grip strength in postmenopausal Turkish women with osteoporosis: site specific or systemic? Int J Fert Women’s Med 47(5):236–239

Dixon WG, Lunt M, Pye SR, Reeve J, Felsenberg D, Silman AJ, O’Neill TW (2005) European Prospective Osteoporosis Study Group. Low grip strength is associated with bone mineral density and vertebral fracture in women. Rheumatology 44(5):642–646

Sirola J, Tuppurainen M, Honkanen R, Jurvelin JS, Kroger H (2005) Associations between grip strength change and axial postmenopausal bone loss - a 10-year population-based follow-up study. Osteoporosis Int 16(12):1841–1848

Kristinsson JO, Valdimarsson O, Steingrimsdottir L, Sigurdsson G (1994) Relation between calcium intake, grip strength and bone mineral density in the forearms of girls aged 13 and 15. J Intern Med 236(4):385–390

Tsuji S, Tsunoda N, Yata H, Katsukawa F, Onishi S, Yamazaki H (1995) Relation between grip strength and radial bone mineral density in young athletes. Arch Phys Med Rehabil 76(3):234–238

Heinonen A, McKay HA, Whittall KP, Forster BB, Khan KM (2001) Muscle cross-sectional area is associated with specific site of bone in prepubertal girls: a quantitative magnetic resonance imaging study. Bone 29(4):388–392

Afghani A, Xie B, Wiswell RA, Gong J, Li Y, Anderson Johnson C (2003) Bone mass of Asian adolescents in China: influence of physical activity and smoking. Med Sci Sports Exerc 35(5):720–729

Ginty F, Rennie KL, Mills L, Stear S, Jones S, Prentice A (2005) Positive, site-specific associations between bone mineral status, fitness, and time spent at high-impact activities in 16- to 18-year-old boys. Bone 36(1):101–110

Valdimarsson O, Kristinsson JO, Stefansson SO, Valdimarsson S, Sigurdsson G (1999) Lean mass and physical activity as predictors of bone mineral density in 16–20-year old women. J Intern Med 245(5):489–496

Nordstrom P, Thorsen K, Nordstrom G, Bergstrom E, Lorentzon R (1995) Bone mass, muscle strength, and different body constitutional parameters in adolescent boys with a low or moderate exercise level. Bone 17(4):351–356

Kemper HCG, Twisk JWR, Van Mechelen W, Post GB, Roos JC, Lips P (2000) A fifteen-year longitudinal study in young adults on the relation of physical activity and fitness with the development of the bone mass: the Amsterdam growth and health longitudinal study. Bone 27(6):847–853

Cadogan J, Eastell R, Jones N, Barker M (1997) Milk intake and bone mineral acquisition in adolescent girls: randomised, controlled intervention trial. BMJ. Br Med J 315:1225–1260

Bailey DA, Martin AD, McKay HA, Whiting S, Mirwald R (2000) Calcium accretion in girls and boys during puberty: a longitudinal analysis. J Bone Miner Res 15(11):2245–2250

Lee WT, Cheung AY, Lau J, Lee SK, Qin L, Cheng JC (2004) Bone densitometry: which skeletal sites are best predicted by bone mass determinants? J Bone Miner Metab 22(5):447–455

Cheng JCY, Leung SSSF, Lee WTK et al (1999) Axial and peripheral bone mineral acquisition: a 3-year longitudinal study in Chinese adolescents. Eur J Pediatr 158:506–512

Foley KT, Owings TM, Pavol MJ, Grabiner MD (1999) Maximum grip strength is not related to bone mineral density of the proximal femur in older adults. Calcif Tissue Int 64(4):291–294

Wu XP, Liao EY, Huang G, Dai RC, Zhang H (2003) A comparison study of the reference curves of bone mineral density at different skeletal sites in native Chinese, Japanese, and American Caucasian women. Calcif Tissue Int 73(2):122–132

Cheng JCY, Leung SSSF, Lee WTK et al (1998) Determinants of axial and peripherial bone mass in Chinese adolescents. Arch Dis Child 78(6):524–530

Van Coeverden SC, De Ridder CM, Roos JC, Van’t Hof MA, Netelenbos JC, Delemarre-Van de Waal HA (2001) Pubertal maturation characteristics and the rate of bone mass development longitudinally toward menarche. J Bone Miner Res 16(4):774–781

MacKelvie KJ, Petit MA, Khan KM, Beck TJ, McKay HA (2004) Bone mass and structure are enhanced following a 2-year randomized controlled trial of exercise in prepubertal boys. Bone 34(4):755–764

Horlick M, Wang J, Pierson RN Jr, Thornton JC (2004) Prediction models for evaluation of total-body bone mass with dual-energy X-ray absorptiometry among children and adolescents.. Pediatrics 114(3):e337–e345

Fewtrell MS, British Paediatric & Adolescent Bone Group (2003) Bone densitometry in children assessed by dual x ray absorptiometry: uses and pitfalls.. Arch Dis Child 88(9):795–798

Hannan WJ, Cowen SJ, Wrate RM, Barton J (1995) Improved prediction of bone mineral content and density. Arch Dis Child 72(2):147–149

Spijkerman DCM, Snijders CJ, Stijnen T, Lankhorst GJ (1991) Standardization of grip strength measurements. Scand J Rehab Med 23:203–206

Tanner JM (1978) Physical growth and development. In: Forfar JO, Arnell CC (eds) Textbook of Pediatrics. 2nd edn. Churchill LivingStone, Scotland, pp 249–303

Herman-Giddens ME, Slora EJ, Wasserman RC, Bourdony CJ, Bhapkar MV, Koch GG, Hasemeier CM (1997) Secondary sexual characteristics and menses in young girls seen in office practice: a study from the Pediatric Research in Office Settings network. Pediatrics 99(4):505–512

Woo J, Leung SSF, Ho SC, Lam TH, Janus ED (1997) A food frequency questionnaire for use in the Chinese population in Hong Kong: description and examination of validity. Nutr Res 17:1633–1641

Lee WTK, Cheung CSK, Tse YK, Guo X, Qin L, Ho SC, Lau J, Cheng JCY (2005) Generalized low bone mass of girls with adolescent idiopathic scoliosis is related to inadequate calcium intake and weight bearing physical activity in peripubertal period. Osteoporos Int 16:1024–1035

Institute of Nutrition and Food Safety, China CDC (2002) China Food Composition. Peking University Medical Press

Groothausen J, Siemer H, Kemper HCG, Twisk J, Welten DC (1997) Influence of peak strain on lumbar bone mineral density: An analysis of 15-year physical activity in young males and females. Pediatr Exerc Sci 9:159–173

Van Langendonck L, Lefevre J, Claessens AL, Thomis M, Philippaerts R, Delvaux K, Lysens R, Renson R, Vanreusel B, Vanden Eynde B, Dequeker J, Beunen G (2003) Influence of participation in high-impact sports during adolescence and adulthood on bone mineral density in middle-aged men: a 27-year follow-up study. Am J Epidemiol 158(6):525–533

Kemper HC, Bakker I, Twisk JW, van Mechelen W (2002) Validation of a physical activity questionnaire to measure the effect of mechanical strain on bone mass. Bone 30(5):799–804

Frost HM (2000) Muscle, bone, and the Utah paradigm: a 1999 overview. Med Sci Sports Exerc 32(5):911–917

Rauch F, Bailey DA, Baxter-Jones A, Mirwald R, Faulkner R (2004) The ‘muscle-bone unit’ during the pubertal growth spurt. Bone 34(5):771–775

Huuskonen J, Vaisanen SB, Kroger H, Jurvelin C, Bouchard C, Alhava E, Rauramaa R (2000) Determinants of bone mineral density in middle aged men: a population-based study. Osteoporosis Int 11(8):702–708

Brahm H, Piehl-Aulin K, Ljunghall S (1997) Bone metabolism during exercise and recovery: the influence of plasma volume and physical fitness. Calcif Tissue Int 61(3):192–198

Seeman E, Hopper JL, Young NR, Formica C, Goss P, Tsalamandris C (1996) Do genetic factors explain associations between muscle strength, lean mass, and bone density? A twin study. Am J Physiol 270(2 Pt 1):E320–E327

Chinese Nutrition Society (2000) The Chinese Dietary Reference Intakes (DRIs)