Mối quan hệ giữa điều hòa canxi liên quan đến lưới nội chất và Golgi với sửa chữa DNA do 4-NQO gây ra trong Saccharomyces cerevisiae

Archiv für Mikrobiologie - Tập 192 - Trang 247-257 - 2010
Nadine Paese Poletto1, João Antonio Pêgas Henriques1,2, Diego Bonatto1
1Laboratório de Genética Toxicológica-206, Instituto de Biotecnologia, Centro de Ciências Biológicas e da Saúde, Universidade de Caxias do Sul, UCS, Caxias do Sul, Brazil
2Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil

Tóm tắt

Ion canxi (Ca2+) là một ion quan trọng cần thiết cho việc kích hoạt các cơ chế sửa chữa DNA khác nhau. Tuy nhiên, cơ chế mà qua đó sửa chữa DNA và cân bằng Ca2+ hợp tác vẫn chưa được làm sáng tỏ. Chúng tôi đã thực hiện một cách tiếp cận sinh học hệ thống để xác minh mối quan hệ giữa các protein liên quan đến cân bằng Ca2+ và sửa chữa DNA trong Saccharomyces cerevisiae. Dữ liệu của chúng tôi chỉ ra rằng Pmr1p, một chất vận chuyển Ca2+ của phức hợp Golgi, tương tác với Cod1p, protein điều chỉnh mức độ Ca2+ trong lưới nội chất (ER), và với Rad4p, một protein sửa chữa cắt bỏ nucleotide (NER). Thông tin này đã được sử dụng để xây dựng các đột biến đơn và kép thiếu hụt cho Pmr1p, Cod1p và Rad4p, tiếp theo là phân tích tác động độc tế bào, tác động tĩnh tế bào và sự ngưng trệ chu kỳ tế bào sau khi tế bào tiếp xúc với các nồng độ khác nhau của 4-nitroquinoline 1-oxide (4-NQO). Kết quả chỉ ra rằng các chủng cod1Δ, cod1Δrad4Δ và cod1Δpmr1Δ có độ nhạy cao hơn với 4-NQO so với chủng hoang dã (WT) của nó. Hơn nữa, cả hai chủng cod1Δpmr1Δ và cod1Δrad4Δ đều có sự ngưng trệ mạnh mẽ ở các pha G2/M của chu kỳ tế bào sau điều trị bằng 4-NQO, trong khi pmr1Δrad4Δ có độ nhạy và hồ sơ ngưng trệ chu kỳ tế bào tương tự khi so với rad4Δ sau khi tiếp xúc với 4-NQO. Tổng hợp lại, kết quả của chúng tôi cho thấy rằng sự thiếu hụt các chất vận chuyển Ca2+ liên quan đến Golgi và ER ảnh hưởng đến việc sửa chữa tổn thương DNA do 4-NQO gây ra.

Từ khóa

#canxi #sửa chữa DNA #Saccharomyces cerevisiae #Golgi #lưới nội chất #4-NQO

Tài liệu tham khảo

Ahlers C, Kreideweib S, Northein A, Rülmann A (1999) Cyclosporin A inhibits Ca2+-mediated upregulation of the DNA repair enzyme DNA polymerase β in human peripheral blood mononuclear cells. Eur J Biochem 264:952–959 Al-Mogharabi NM, Al-Sharif IS, Aboussekhra A (2001) The Saccharomyces cerevisiae RAD9 cell cycle checkpoint gene is required for optimal repair of UV-induced pyrimidine dimers in both G1 and G2/M phases of the cell cycle. Nucleic Acids Res 29:2020–2025 Atenbi A, Fink GR (1992) The yeast Ca+2 ATPase homologue, PMR1, is required for normal Golgi function and localizes in novel Golgi-like distribution. Mol Biol Cell 3:633–654 Axelsen KB, Palmgren MG (1998) Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 46:84–101 Bailly V, Lauder S, Prakash S, Prakash L (1997) Yeast DNA repair proteins Rad6 and Rad18 form a heterodimer that has ubiquitin conjugating, DNA binding, and ATP hydrolytic activities. J Biol Chem 272:23360–23365 Baran I (1996) Calcium and cell cycle progression: possible effects of external perturbations on cell proliferation. Biophys J 70:1198–1213 Batiza AF, Schulz T, Masson PH (1996) Yeast respond to hypotonic shock with a calcium pulse. J Biol Chem 271:23357–23362 Benjamini Y, Hochberg Y (2000) On the adaptive control of the false discovery rate in multiple testing with independent statistics. J Educat Behav Stat 25:60–83 Bonilla M, Cunningham KW (2003) Mitogen-activated protein kinase stimulation of Ca2+ signaling is required for survival of endoplasmic reticulum stress in yeast. Mol Biol Cell 14:4296–4305 Cronin SR, Khowry A, Ferry DK, Hampton RV (2000) Regulation of HMG-CoA reductase degradation required the type ATPase Cod1p/Spf1p. J Cell Biol 157:1017–1028 Cronin SR, Rao R, Hampton RY (2002) Cod1p/Spf1p is a P-type ATPase involved in ER function and Ca2+ homeostasis. J Cell Biol 157:1017–1028 Cunningham KW, Fink FR (1994) Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1 a homolog of plasma membrane Ca+2 ATPases. J Cell Biol 124:351–363 Dunn T, Gable K, Beeler T (1994) Regulation of cellular Ca2+ by yeast vacuoles. J Biol Chem 269:7273–7278 Eilam Y, Lavi H, Grossowicz N (1985) Mechanism of stimulation of Ca2+ uptake by miconazole and ethidium bromide in yeasts: role of vacuoles in Ca2+ detoxification. Microbios 44:51–66 Fan W, Idnurm A, Breger J, Mylonakis E, Heitman J (2007) Eca1, a sarcoplasmic/endoplasmic reticulum Ca2+-ATPase, is involved in stress tolerance and virulence in Cryptococcus neoformans. Infect Immun 75:3394–3405 Gafter U, Malachi T, Ori Y, Breitbart H (1997) The role of calcium in human lymphocyte DNA repair ability. J Lab Clin Med 130:33–41 Garcia O, Saveanu C, Cline M, Fromont-Racine M, Jacquier A, Schwikowski B, Aittokallio T (2007) GOlorize: a Cytoscape plug-in for network visualization with gene ontology-based layout and coloring. Bioinformatics 23:394–396 Geier BM, Wiech H, Schiebel E (1996) Binding of centrins and yeast calmodulin to synthetic peptides corresponding to binding sites in the spindle pole body components Kar1p and Spc110p. J Biol Chem 271:28366–28374 Gietz RD, Woods RA (2002) Transformations of yeast by the LiAc/SS carrier DNA/PEG method. Meth Enzymol 350:87–96 Gomes PS (2001) Ischaemic heart disease: clinical improvement with metabolic approach-final remarks. Rev Port Cardiol 19:41–43 Güldner U, Heck S, Fiedler T, Beinhauer J, Hegemann J (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524 Guo Q, Sopher BL, Furukawa K, Pham DG, Robinson N, Martin GM, Mattson MP (1997) Alzheimer’s presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid β-peptide: involvement of calcium and oxyradicals. J Neurosci 17:4212–4222 Hanway D, Chin KJ, Xia G, Oshiro G, Winzeler EA, Romesberg FE (2002) Previously uncharacterized genes in the UV- and MMS-induced DNA damage response in yeast. Proc Natl Acad Sci USA A99:10605–10610 Iida H, Sakaguchi SS, Yagawat Y, Anrakun Y (1990) Cell cycle control by Ca2+ in Saccharomyces cerevisiae. J Biol Chem 265:21216–21222 Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M, Bork P, von Mering C (2009) STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37:D412–D416 Jentsch S, McGrath JP, Varshavsky A (1987) The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature 329:131–134 Kondo N, Inoue R, Nishimura S, Kasahara K, Kameyama T, Miwa Y, Lorenzo PR, Orii T (1993) Defective calcium-dependent signal transduction in T-lymphocytes of ataxia telangiectasia. Scand J Immunol 38:45–48 Korzets A, Chagnac A, Weinstein T, Ori Y, Malachi T, Gafter U (1999) H2O2 induces DNA repair in mononuclear cells: evidence for association with cytosolic Ca2+ fluxes. J Lab Clin Med 133:362–369 Lakatta EG, Guarnieri T (1993) Spontaneous myocardial column oscillations: are they linked to ventricular fibrillation? J Cardiovasc Eletrophysiol 4:473–489 Lewis LK, Westmoreland JW, Resnick MA (1999) Repair of endonuclease-induced double-strand breaks in Saccharomyces cerevisiae: essential role for genes associated with nonhomologous end-joining. Genetics 52:1513–1523 Lutz W, Lingle WL, McCormick D, Greenwood TM, Salisbury JL (2001) Phosphorylation of centrin during the cell cycle and its role in centriole separation preceding centrosome duplication. J Biol Chem 276:20774–20780 Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449 Medicherla B, Kostova Z, Schaefer A, Wolf DH (2004) A genomic screen identifies Dsk2p and Rad23p as essential components of ER-associated degradation. EMBO Rep. 5:692–697 Miseta A, Kellermayer R, Aiello DP, Fu L, Bedwell DM (1999) The vacuolar Ca2+/H+ exchanger Vcx1p/Hum1p tightly controls cytosolic Ca2+ levels in S. cerevisiae. FEBS Lett 451:132–136 Nishi R, Okuda Y, Watanabe E, Mori T, Iwai S, Masutani C, Sugasawa K, Hanaoka F (2005) Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein. Mol Cell Biol 25:5664–5674 Poletto NP, Rosado JO, Bonatto D (2009) Evaluation of cytotoxic and cytostatic effects in Saccharomyces cerevisiae by Poissoner quantitative drop test. Basic Clin Pharmacol Toxicol 104:71–75 Prakash S, Prakash L (2000) Nucleotide excision repair in yeast. Mutat Res 451:13–24 Prakash S, Johnson RE, Prakash L (2005) Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem 74:317–353 Rasheva VI, Domingos PM (2009) Cellular responses to endoplasmic reticulum stress and apoptosis. Apoptosis 14:996–1007 Rivals I, Personnaz L, Taing L, Potier M (2007) Enrichment or depletion of a GO category within a class of genes: which test? Bioinformatics 23:401–407 Robinson GW, Nicolett CM, Kalainov D, Friedberg EC (1986) A yeast excision repair gene is inducible by DNA damaging agents. Genetics 83:1842–1846 Santella L, Carafoli E (1997) Calcium signaling in the cell nucleus. FASEB J 11:1091–1109 Schallreuter KU, Pittelkow MR, Wood JM (1991) Defects in antioxidant defence and calcium transport in the epidermis of xeroderma pigmentosum patients. Arch Dermatol Res 283:449–455 Shalev O, Leida MN, Hebbel RP, Jacob HS, Eaton JW (1981) Abnormal Erythrocyte calcium homeostasis in oxidant-induced hemolytic disease. Blood 58:1232–1235 Strayle J, Pozzan T, Rudolph HK (1999) Steady state free Ca2+ in the yeast endoplasmic reticulum reaches only 10 mM and is mainly controlled by the secretory pathway Pmr1p. EMBO J 18:4733–4743 Ton V, Rao R (2004) Functional expression of heterologous proteins in yeast: insights into Ca2+ signaling and Ca2+-transporting ATPases. Am J Physiol Cell Physiol 287:580–589 Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249–258 Trump BF, Berezeski IK (1995) Calcium-mediated cell injury and cell death. FASEB J 9:219–228 Vashist S, Frank CG, Jakob CA, Ng DT (2002) Two distinctly localized p-type ATPases collaborate to maintain organelle homeostasis required for glycoprotein processing and quality control. Mol Biol Cell 13:3955–3966 Wood RD (1997) Nucleotide excision repair in mammalian cells. J Biol Chem 272:23465–23468 Yu Z, Chen J, Ford N, Brackley ME, Glickman BW (1999) Human DNA repair systems: an overview. Envir Mol Mutag 33:3–22