Relationship Between Thermal Conductivity and Tensile Strength in Cast Irons
Tóm tắt
Improved mechanical and thermal properties are important characteristics for enhancing the performance of cast iron components that operate at elevated temperatures. Thermal conductivity defines the temperature distribution within the casting and influences the magnitude of the thermally induced tensile stresses. The microstructural features that increase the thermal conductivity have a negative impact on tensile strength. The results reported in this work show that there is a unique inverse relationship between thermal conductivity and tensile strength, valid for the whole range of cast iron alloys regardless of graphite form, solidification rates, carbon content and matrix constituents. The finding indicates the challenges for the simultaneous improvement of these properties, and it can be utilized as a guideline during the design of cast iron components for high temperature applications.
Tài liệu tham khảo
D. Pierce, A. Haynes, J. Hughes, R. Graves, P. Maziasz, G. Muralidharan, A. Shyam, B. Wang, R. England, C. Daniel, High temperature materials for heavy duty diesel engines: Historical and future trends. Prog. Mater Sci. 103, 109–179 (2019)
Y. Park, R. Gundlach, R. Thomas, J. Janowak, Thermal fatigue resistance of gray and compacted graphite irons. AFS Trans. 93, 415–422 (1985)
K. Roehrig, Thermal fatigue of gray and ductile irons. AFS Trans. 86, 75–88 (1978)
S.N. Lekakh, V.A. Athavale, L. Bartlett, M. Li, Effect of micro-structural dispersity of SiMo ductile iron on thermal cycling performance. Inter Metalcast (2022). https://doi.org/10.1007/s40962-022-00915-5
S.N. Lekakh, C. Johnson, L. Godlewski, M. Li, Control of high-temperature static and transient thermomechanical behavior of simo ductile iron by Al alloying. Inter. Metalcast. (2022). https://doi.org/10.1007/s40962-022-00768-y
J. Helsing, G. Grimvall, Thermal conductivity of cast iron: Models and analysis of experiments. J. Appl. Phys. 70, 1198–1206 (1991)
J. R. Davis, (Ed.). (1996). ASM specialty handbook: cast irons. ASM international
D. Holmgren, I.L. Svensson, Thermal conductivity–structure relationships in grey cast iron. Inter Metalcast 18(6), 321–330 (2005). https://doi.org/10.1179/136404605225023162
D. Holmgren, A. Diószegi, I.L. Svensson, Effects of transition from lamellar to compacted graphite on thermal conductivity of cast iron. Inter Metalcast 19(6), 303–313 (2006). https://doi.org/10.1179/136404607X176203
V. Fourlakidis, A. Diószegi, A generic model to predict the ultimate tensile strength in pearlitic lamellar graphite iron. Mater. Sci. Eng. A 618, 161–167 (2014)
J.C. Hernando, J. Elfsberg, E. Ghassemali, A.K. Dahle, A. Diószegi, The role of primary austenite morphology in hypoeutectic compacted graphite iron alloys. Inter. Metalcast. 14, 745–754 (2020). https://doi.org/10.1007/s40962-020-00410-9
V. Fourlakidis, I. Belov, A. Diószegi, Strength prediction for pearlitic lamellar graphite iron: model validation. Metals 8, 684 (2018)
J.C. Hernando, B. Domeij, D. González, J.M. Amieva, A. Diószegi, New experimental technique for nodularity and mg fading control in compacted graphite iron production on laboratory scale. Metall. and Mater. Trans. A. 48(11), 5432–5441 (2017)
G. Wang, X. Chen, Y. Li, Z. Liu, Effects of inoculation on the pearlitic gray cast iron with high thermal conductivity and tensile strength. Materials 11(10), 1876 (2018)
W.L. Guesser, I. Masiero, E.C.C.S. Melleras, Thermal conductivity of gray iron and compacted graphite iron used for cylinder heads. Revista Matéria 10(2), 265–272 (2005)
Y. Liu, Y. Li, J. Xing, S. Wang, B. Zheng, D. Tao, W. Li, Effect of graphite morphology on the tensile strength and thermal conductivity of cast iron. Mater. Charact. 144, 155–165 (2018)
K. Jalava, K. Soivio, J. Laine, J. Orkas, Elevated temperature thermal conductivities of some as-cast and austempered cast irons. Mater. Sci. Technol. 14, 327–333 (2018)
K. Jalava, K. Soivio, J. Laine, J. Orkas, Effect of silicon and microstructure on spheroidal graphite cast iron thermal conductivity at elevated temperatures. Inter. Metalcast. 12, 480–486 (2018). https://doi.org/10.1007/s40962-017-0184-1
J. Laine, K. Jalava, J. Vaara, K. Soivio, J. Orkas, The mechanical properties of ductile iron at intermediate temperatures: the effect of silicon content and pearlite fraction. Inter. Metalcast. 15, 538–547 (2021). https://doi.org/10.1007/s40962-020-00473-8
A. Diószegi, V. Fourlakidis, J.C. Hernando, D. Holmgren, Effect of inoculation on the material property in cast iron, oral presentation by Diószegi at the 74th World Foundry Congress, Busan, Korea, 2022.