Relations between the Kähler cone and the balanced cone of a Kähler manifold

Advances in Mathematics - Tập 263 - Trang 230-252 - 2014
Jixiang Fu1, Jian Xiao1
1Institute of Mathematics, Fudan University, Shanghai 200433, China

Tài liệu tham khảo

Alessandrini, 1992, Positive ∂∂¯-closed currents and non-Kähler geometry, J. Geom. Anal., 2, 291, 10.1007/BF02934583 Alessandrini, 1993, Metric properties of manifolds bimeromorphic to compact Kähler spaces, J. Differential Geom., 37, 95, 10.4310/jdg/1214453424 Alessandrini, 1995, Modifications of compact balanced manifolds, C. R. Math. Acad. Sci. Paris, 320, 1517 Bigolin, 1969, Gruppi di Aeppli, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 23, 259 Boucksom, 2004, Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Ec. Norm. Super. (4), 37, 45, 10.1016/j.ansens.2003.04.002 Boucksom, 2010, Monge–Ampère equations in big cohomology classes, Acta Math., 205, 199, 10.1007/s11511-010-0054-7 Boucksom, 2013, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom., 22, 201, 10.1090/S1056-3911-2012-00574-8 Debarre, 2001 Demailly, 1993, A numerical criterion for very ample line bundles, J. Differential Geom., 37, 323, 10.4310/jdg/1214453680 Demailly Demailly, 2004, Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math. (2), 159, 1247, 10.4007/annals.2004.159.1247 Fu, 2012, Balanced metrics on non-Kähler Calabi–Yau threefolds, J. Differential Geom., 90, 81, 10.4310/jdg/1335209490 Fu, 2010, Form-type Calabi–Yau equations, Math. Res. Lett., 17, 887, 10.4310/MRL.2010.v17.n5.a7 Fu Gray, 1980, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4), 123, 35, 10.1007/BF01796539 Green, 1995, Black hole condensation and the unification of string vacua, Nuclear Phys. B, 451, 109, 10.1016/0550-3213(95)00371-X Gromov, 1990, Convex sets and Kähler manifolds, 1 Kawamata, 1988, Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces, Ann. of Math. (2), 127, 93, 10.2307/1971417 Kawamata, 1997, On the cone of divisors of Calabi–Yau fiber spaces, Internat. J. Math., 8, 665, 10.1142/S0129167X97000354 Kawamata, 1987, Introduction to the minimal model problem, Adv. Stud. Pure Math., 10, 283, 10.2969/aspm/01010283 Michelsohn, 1982, On the existence of special metrics in complex geometry, Acta Math., 149, 261, 10.1007/BF02392356 Paun, 1998, Sur l'effectivité numérique des images inverses de fibrés en droites, Math. Ann., 310, 411, 10.1007/s002080050154 Rossi, 2006, Geometric transitions, J. Geom. Phys., 56, 1940, 10.1016/j.geomphys.2005.09.005 Sullivan, 1976, Cycles for the dynamical study of foliated manifolds and complex manifolds, Invent. Math., 36, 225, 10.1007/BF01390011 Toma, 2010, A note on the cone of mobile curves, C. R. Math. Acad. Sci. Paris, 348, 71, 10.1016/j.crma.2009.11.003 Tosatti, 2009, Limits of Calabi–Yau metrics when the Kähler class degenerates, J. Eur. Math. Soc. (JEMS), 11, 755, 10.4171/JEMS/165 Tosatti Voisin, 2003, Hodge Theory and Complex Algebraic Geometry, I, vol. 76 Yau, 1978, On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I, Comm. Pure Appl. Math., 31, 339, 10.1002/cpa.3160310304