Relational Quantum Mechanics and Probability
Tóm tắt
Từ khóa
Tài liệu tham khảo
Feynman, R.: The Character of Physical Law. MIT Press, Cambridge (1967)
Auletta, G.: Foundations and Interpretation of Quantum Mechanics: In the Light of a Critical–Historical Analysis of the Problems and of a Synthesis of the Results. World Scientific, Singapore (2001)
Hardy, L.: Quantum theory from five reasonable axioms. arXiv preprint arxiv:quant-ph/0101012 (2001)
Clifton, R., Bub, J., Halvorson, H.: Characterizing quantum theory in terms of information-theoretic constraints. Found. Phys. 33, 1561–1591 (2003)
Grinbaum, A.: Reconstructing instead of interpreting quantum theory. Philos. Sci. 74, 761–774 (2007)
Dakic, B., Brukner, C.: Quantum theory and beyond: Is entanglement special? arXiv preprint arXiv:0911.0695 (2009)
Hohenberg, P.C.: Colloquium: an introduction to consistent quantum theory. Rev. Mod. Phys. 82, 2835–2844 (2010)
Chiribella, G., D’Ariano, G.M., Perinotti, P.: Informational derivation of quantum theory. Phys. Rev. A 84, 012311 (2011)
Masanes, L., Müller, M.P., Augusiak, R., Pèrez-Garcìa, D.: Existence of an information unit as a postulate of quantum theory. Proc. Natl. Acad. Sci. USA 110, 16373–16377 (2013)
Barnum, H., Müller, M.P., Ududec, C.: Higher-order interference and single-system postulates characterizing quantum theory. New J. Phys. 16, 123029 (2014)
Auffèves, A., Grangier, P.: Contexts, systems and modalities: a new ontology for quantum mechanics. Found. Phys. 46, 121–137 (2016)
Friedberg, R., Hohenberg, P.C.: What is quantum mechanics? A minimal formulation. Found. Phys. 48, 295–332 (2018)
Brukner, C., Zeilinger, A.: Operationally invariant information in quantum measurements. Phys. Rev. Lett. 83, 3354–3357 (1999)
Brukner, C., Zeilinger, A.: Young’s experiment and the finiteness of information. Philos. Trans. R. Soc. A 360, 1061–1069 (2002)
Fuchs, C.A.: Quantum mechanics as quantum information (and only a little more). arXiv preprint arxiv:quant-ph/0205039 (2002)
Barrett, J.: Information processing in generalized probabilistic theories. Phys. Rev. A 75, 032304 (2007)
Brukner, C., Zeilinger, A.: Information invariance and quantum probabilities. Found. Phys. 39, 677–689 (2009)
Höhn, P.: Toolbox for reconstructing quantum theory from rules on information acquisition. Quantum 1, 38 (2017)
Yang, J.: Quantum mechanics from relational properties, Part I: Formulation. arXiv preprint arXiv:1706.01317 (2017)
Yang, J.: Quantum mechanics from relational properties, Part II: Measurement. arXiv preprint arXiv:1803.04843 (2018)
Yang, J.: Quantum mechanics from relational properties, Part III: Path integral implementation. arXiv preprint arXiv:1807.01583 (2018)
Poulin, D.: Toy model for a relational formulation of quantum theory. Int. J. Theor. Phys. 45, 1189–1215 (2006)
Brown, M.J.: Relational quantum mechanics and the determinacy problem. Br. J. Philos. Sci. 60, 679–695 (2009)
Grinbaum, A.: Information-theoretic princple entails orthomodularity of a lattice. Found. Phys. Lett. 18, 563–572 (2005)
Von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)
Beltrametti, E., Cassinelli, G.: The Logic of Quantum Mechanics. Cambridge University Press, Cambridge (1984)
Hughes, R.: The Structure and Interpretation of Quantum Mechanics. Harvard University Press, Cambridge (1989)
Dalla Chiara, M., Giuntini, R., Greechie, R.: Reasoning in Quantum Theory: Sharp and Unsharp Quantum Logics. Springer, Dordrecht (2004)
Cohen-Tannoudji, C., Diu, B., Laloë, F.: Mècanique Quantique, 2nd edn. Hermann, Paris (1996)
Hájek, A.: Interpretations of probability. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Stanford (2012)
Fine, T.: Theories of Probability: An Examination of Foundations. Academic Press, Cambridge (1973)
Kolmogorov, A.: Foundations of the Theory of Probability. Chelsea Pub. Co, New York (1956)
Jaynes, E., Bretthorst, G.: Probability Theory: The Logic of Science. Cambridge University Press, Cambridge (2003)
Gudder, S.: Quantum Probability. Academic Press, New York (1988)
Varadarajan, V.: Geometry of Quantum Theory. Springer, New York (2007)
Auffèves, A., Grangier, P.: Recovering the quantum formalism from physically realist axioms. Sci. Rep. 7, 43365 (2017)
Gleason, A.M.: Measures on the closed subspaces of a Hilbert space. J. Math. Mech. 6, 885–893 (1957)
Piron, C.: Foundations of Quantum Physics. Benjamin-Cummings Publishing Company, San Francisco (1976)
D’Agostini, G.: Bayesian Reasoning in Data Analysis: A Critical Introduction. World Scientific, Singapore (2003)
Feynman, R.P.: The concept of probability in quantum mechanics. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, Berkeley (1951)