Relating the Almost-Sure Lyapunov Exponent of a Parabolic SPDE and its Coefficients? Spatial Regularity
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adler, R.: An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes, Inst. Math. Stat., Hayward, CA, 1990.
Berge, B., Chueshov, I.D. and Vuillermot, P.-A.: ?Lyapunov exponents and stability for nonlinear SPDE?s driven by finite-dimensional Wiener processes?, C.R. Acad. Sci. Paris S�r. I Math. 329(3) (1999), 215?220.
Bertini, L. and Giacomin, G.: ?On the long-time behavior of the stochastic heat equation?, Probab. Theory Related Fields 114(3) (1999), 279?289.
Carmona, R.A. and Molchanov, S.A.: Parabolic Anderson Model and Intermittency, Mem. Amer. Math. Soc. 418, 1994.
Carmona, R.A., Molchanov, S.A. and Viens, F.G.: ?Sharp upper bound on exponential behavior of a stochastic partial differential equation?, Random Operators and Stochastic Equations 4(1) (1996), 43?49.
Carmona, R. and Viens, F.: ?Almost-sure exponential behavior of a stochastic Anderson model with continuous space parameter?, Stochastics Stochastics Rep. 62(3?4) (1998), 251?273.
Cranston, M., Mountford, T.S. and Shiga, T.: ?Lyapunov exponents for the parabolic Anderson model?, Acta Math. Univ. Comenian. (N.S.) 71(2) (2002), 163?188.
Da Prato, G. and Zabczyk, J.: Stochastic Equations in Infinite Dimensions, Cambridge Univ. Press, 1992.
Dalang, R. and Frangos, N.: ?The stochastic wave equation in two spatial dimensions?, Ann. Probab. 26 (1998), 187?212.
Gartner, J., Konig, W. and Molchanov, S.A.: ?Almost sure asymptotics for the continuous parabolic Anderson model?, Probab. Theory Related Fields 118(4) (2000), 547?573.
Karatzas, I. and Shreve, S.: Brownian Motion and Stochastic Calculus, 2nd edn, Springer, 1991.
Millet, A. and Sanz-Sole, M.: ?A stochastic wave equation in two spatial dimensions: Smoothness of the law?, Ann. Probab. 27(2) (1999), 803?844.
Peszat, S. and Zabczyk, J.: ?Nonlinear stochastic wave and heat equations?, Probab. Theory Related Fields 116(3) (2000), 421?443.