Relating domination, exponential domination, and porous exponential domination

Discrete Optimization - Tập 23 - Trang 81-92 - 2017
Michael A. Henning1, Simon Jäger2, Dieter Rautenbach2
1Department of Pure and Applied Mathematics, University of Johannesburg, Auckland Park, 2006, South Africa
2Institute of Optimization and Operations Research, Ulm University, Ulm, Germany

Tài liệu tham khảo

Anderson, 2009, On exponential domination of Cm×Cn, AKCE Int. J. Graphs Comb., 6, 341 Aytaç, 2016, On exponential domination of some graphs, Nonlinear Dyn. Syst. Theory, 16, 12 S. Bessy, P. Ochem, D. Rautenbach, Bounds on the exponential domination number, Discrete Math. (in press). S. Bessy, P. Ochem, D. Rautenbach, Exponential domination in subcubic graphs. arXiv:1511.01398. Dankelmann, 2009, Domination with exponential decay, Discrete Math., 309, 5877, 10.1016/j.disc.2008.06.040 Daugherty, 2005, On the total influence number of a graph, Congr. Numer., 174, 107 Goddard, 2014, The disjunctive domination number of a graph, Quaest. Math., 37, 547, 10.2989/16073606.2014.894688 Haynes, 1998 Hedetniemi, 2006, Unsolved algorithmic problems on trees, AKCE Int. J. Graphs Comb., 3, 1 Henning, 1998, Distance domination in graphs, vol. 209, 321 Henning, 2015, Domination versus disjunctive domination in trees, Discrete Appl. Math., 184, 171, 10.1016/j.dam.2014.10.036 Henning, 2016, Domination versus disjunctive domination in graphs, Quaest. Math., 29, 261, 10.2989/16073606.2015.1068237 Panda, 2015, Algorithmic aspects of disjunctive domination in graphs, vol. 9198, 325