Relating adatom emission to improved durability of Pt–Pd diesel oxidation catalysts

Journal of Catalysis - Tập 328 - Trang 151-164 - 2015
Tyne R. Johns1, Ronald S. Goeke2, Valerie Ashbacher1, Peter C. Thüne3, J. W. Niemantsverdriet3, Boris Kiefer4, Chang Hwan Kim5, Michael P. Balogh5, Abhaya K. Datye1
1Department of Chemical & Biological Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
2Sandia National Laboratories, P.O. Box 5800, MS 0959, Albuquerque, NM 87185-0959, USA
3Einhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
4Department of Physics, New Mexico State University, Las Cruces, NM 88003, USA
5General Motors Global R&D, 30500 Mound Rd., Warren, MI 48090, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

USDRIVE Advanced Combustion and Emission Control Roadmap, 2013. <http://www1.eere.energy.gov/vehiclesandfuels/pdfs/program/acec_roadmap_june2013.pdf>.

Adams, 2008, Impact of redox conditions on thermal deactivation of NOx traps for diesel, Appl. Catal., B – Environ., 80, 343, 10.1016/j.apcatb.2007.11.026

Graham, 2007, Effect of alloy composition on dispersion stability and catalytic activity for NO oxidation over alumina-supported Pt–Pd catalysts, Catal. Lett., 116, 1, 10.1007/s10562-007-9124-7

K. Kallinen, A. Moreno, A. Savimäki, T.-J.J. Kinnunen, Pt/Pd diesel oxidation catalyst: a study on the properties enhanced by the use of Pd, in: SAE Technical Paper 2009-26-0018, 2009.

Kaneeda, 2009, Improvement of thermal stability of NO oxidation Pt/Al2O3 catalyst by addition of Pd, Appl. Catal., B – Environ., 90, 564, 10.1016/j.apcatb.2009.04.011

Graham, 2004, Coarsening of Pt particles in a model NOx trap, Catal. Lett., 93, 129, 10.1023/B:CATL.0000017065.47758.34

Hansen, 2013, Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?, Acc. Chem. Res., 46, 1720, 10.1021/ar3002427

Simonsen, 2010, Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM, J. Am. Chem. Soc., 132, 7968, 10.1021/ja910094r

Behafarid, 2014, An in situ transmission electron microscopy study of sintering and redispersion phenomena over size-selected metal nanoparticles: environmental effects, Phys. Chem. Chem. Phys., 16, 18176, 10.1039/C4CP02574A

Chen, 1978, Morphology and sintering of Pt crystallites on amorphous SiO2, J. Catal., 55, 348, 10.1016/0021-9517(78)90222-1

Alcock, 1960, Thermodynamics of the gaseous oxides of the platinum-group metals, Proc. R. Soc. London Series A – Math. Phys. Sci., 254, 551

Johns, 2013, Microstructure of bimetallic Pt–Pd catalysts under oxidizing conditions, ChemCatChem, 5, 2636, 10.1002/cctc.201300181

Li, 2013, Stable platinum nanoparticles on specific MgAl2O4 spinel facets at high temperatures in oxidizing atmospheres, Nat. Commun., 4, 2481, 10.1038/ncomms3481

Wiebenga, 2012, Deactivation mechanisms of Pt/Pd-based diesel oxidation catalysts, Catal. Today, 184, 197, 10.1016/j.cattod.2011.11.014

Thune, 2012, The effect of water on the stability of iron oxide and iron carbide nanoparticles in hydrogen and syngas followed by in situ X-ray absorption spectroscopy, J. Phys. Chem. C, 116, 7367, 10.1021/jp210754k

Moodley, 2010, Iron oxide nanoparticles on flat oxidic surfaces—introducing a new model catalyst for Fischer-Tropsch catalysis, Catal. Today, 154, 142, 10.1016/j.cattod.2010.03.020

Sabre TubeTM Manufactured by Absolute Nano. <www.absolutenano.com>.

Challa, 2011, Relating rates of catalyst sintering to the disappearance of individual nanoparticles during Ostwald ripening, J. Am. Chem. Soc., 133, 20672, 10.1021/ja208324n

Hulett, 1904, Volatilization of platinum, J. Am. Chem. Soc., 26, 1512, 10.1021/ja02001a012

Wu, 1986, Reaction-enhanced sintering of platinum thin-films during ethylene oxidation, J. Appl. Phys., 59, 769, 10.1063/1.336597

Norman, 1965, Mass spectrometric Knudsen cell measurements of vapor pressure of palladium and partial pressure of palladium oxide, J. Phys. Chem., 69, 1373, 10.1021/j100888a046

Hohenberg, 1964, Inhomogeneous electron gas, Phys. Rev. B, 136, 8864, 10.1103/PhysRev.136.B864

Kresse, 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0

Kresse, 1993, Ab-initio molecular-dynamics for open-shell transition-metals, Phys. Rev. B, 48, 13115, 10.1103/PhysRevB.48.13115

Kresse, 1994, Norm-conserving and ultrasoft pseudopotentials for first-row and transition-elements, J. Phys. – Condens. Matter, 6, 8245, 10.1088/0953-8984/6/40/015

Perdew, 1992, Accurate and simple analytic representation of the electron-gas correlation-energy, Phys. Rev. B, 45, 13244, 10.1103/PhysRevB.45.13244

Blochl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953

Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758

Pearson, 1967

Digne, 2004, Use of DFT to achieve a rational understanding of acid-basic properties of gamma-alumina surfaces, J. Catal., 226, 54, 10.1016/j.jcat.2004.04.020

Valero, 2007, Nucleation of Pd-n (n=1–5) clusters and wetting of Pd particles on gamma-Al2O3 surfaces: a density functional theory study, Phys. Rev. B, 75, 045427, 10.1103/PhysRevB.75.045427

Deskins, 2009, Adsorption and diffusion of a single Pt atom on gamma-Al2O3 surfaces, Surf. Sci., 603, 2793, 10.1016/j.susc.2009.07.021

Lopez, 1999, Ab initio theory of metal deposition on SiO2. 1. Cu-n (n=1–5) clusters on nonbridging oxygen defects, J. Phys. Chem. B, 103, 1712, 10.1021/jp9840174

Darby, 1972, Thermodynamic study of solid Pd–Pt alloys, Metall. Trans., 3, 653, 10.1007/BF02642747

Porsgaard, 2012, Stability of platinum nanoparticles supported on SiO2/Si(111): a high-pressure X-ray photoelectron spectroscopy study, ACS Nano, 6, 21, 10.1021/nn3040167

C.H. Kim, M. Schmid, S.J. Schmieg, J. Tan, W. Li, The effect of Pt–Pd ratio on oxidation catalysts under simulated diesel exhaust, in: SAE Technical Paper 2011-01-1134, 2011.