Reissner stationary variational principle for nonlocal strain gradient theory of elasticity
Tài liệu tham khảo
Shaat, 2016, On a second-order rotation gradient theory for linear elastic continua, Int. J. Eng. Sci., 100, 74, 10.1016/j.ijengsci.2015.11.009
Aifantis, 1992, On the role of gradients in the localization of deformation and fracture, Int. J. Eng. Sci., 30, 1279, 10.1016/0020-7225(92)90141-3
Aifantis, 2003, Update on a class of gradient theories, Mech. Mater., 35, 259, 10.1016/S0167-6636(02)00278-8
Aifantis, 2011, On the gradient approach–Relation to Eringen's nonlocal theory, Int. J. Eng. Sci., 49, 1367, 10.1016/j.ijengsci.2011.03.016
Aifantis, 2014, On non-singular GRADELA crack fields, Theor. Appl. Mech. Lett., 4, 10.1063/2.1405105
Aifantis, 2016, Internal length gradient (ILG) material mechanics across scales and disciplines, Adv. Appl. Mech., 49, 1, 10.1016/bs.aams.2016.08.001
Aifantis, 2005, The role of interfaces in enhancing the yield strength of composites and polycrystals, J. Mech. Phys. Solid., 53, 1047, 10.1016/j.jmps.2004.12.003
Altan, 1996, Longitudinal vibrations of a beam: a gradient elasticity approach, Mech. Res. Commun., 23, 35, 10.1016/0093-6413(95)00074-7
Apuzzo, 2017, A closed-form model for torsion of nanobeams with an enhanced nonlocal formulation, Composites Part B, 108, 315, 10.1016/j.compositesb.2016.09.012
Apuzzo, 2017, Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model, Composites Part B, 123, 105, 10.1016/j.compositesb.2017.03.057
Askes, 2009, Gradient elasticity and flexural wave dispersion in carbon nanotubes, Phys. Rev. B, 80, 10.1103/PhysRevB.80.195412
Askes, 2011, Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results, Int. J. Solid Struct., 48, 1962, 10.1016/j.ijsolstr.2011.03.006
Askes, 2010, Review and critique of the stress gradient elasticity theories of Eringen and Aifantis, 203
Askes, 2002, A classification of higher-order strain-gradient models–linear analysis, Arch. Appl. Mech., 2, 171, 10.1007/s00419-002-0202-4
Attia, 2016, Modeling and analysis of nanobeams based on nonlocal-couple stress elasticity and surface energy theories, Int. J. Mech. Sci., 105, 126, 10.1016/j.ijmecsci.2015.11.002
Barretta, 2015, Variational formulations for functionally graded nonlocal Bernoulli–Euler nanobeams, Compos. Struct., 129, 80, 10.1016/j.compstruct.2015.03.033
Barretta, 2015, A gradient Eringen model for functionally graded nanorods, Compos. Struct., 131, 1124, 10.1016/j.compstruct.2015.06.077
Barretta, 2016, Functionally graded Timoshenko nanobeams: a novel nonlocal gradient formulation, Composites Part B, 100, 208, 10.1016/j.compositesb.2016.05.052
Barretta, 2017, Longitudinal vibrations of nano-rods by stress-driven integral elasticity, Mech. Adv. Mater. Struct.
Barretta, 2017, Application of gradient elasticity to armchair carbon nanotubes: size effects and constitutive parameters assessment, Eur. J. Mech. Solid., 65, 1, 10.1016/j.euromechsol.2017.03.002
Blevins, 2016
Canadija, 2016, On functionally graded Timoshenko nonisothermal nanobeams, Compos. Struct., 135, 286, 10.1016/j.compstruct.2015.09.030
Carrera, 2001, Developments, ideas, and evaluations based upon Reissner's mixed variational theorem in the modeling of multilayered plates and shells, Appl. Mech. Rev., 54, 301, 10.1115/1.1385512
Carrera, 2005, Bending of composites and sandwich plates subject to localized lateral loadings: a comparison of various theories, Compos. Struct., 68, 185, 10.1016/j.compstruct.2004.03.013
Carrera, 2005, A unified formulation to assess theories of multilayered plates for various bending problems, Compos. Struct., 69, 271, 10.1016/j.compstruct.2004.07.003
Carrera, 2011
Challamel, 2013, Variational formulation of gradient or/and nonlocal higher-order shear elasticity beams, Compos. Struct., 105, 351, 10.1016/j.compstruct.2013.05.026
Challamel, 2008, The small length scale effect for a non-local cantilever beam: a paradox solved, Nanotechnol, 19, 10.1088/0957-4484/19/34/345703
Demasi, 2009, Mixed plate theories based on the generalized unified formulation, I: governing equations, Compos. Struct., 87, 1, 10.1016/j.compstruct.2008.07.013
Dym, 2013
Elishakoff, 2012
Emam, 2009, Postbuckling and free vibrations of composite beams, Compos. Struct., 88, 636, 10.1016/j.compstruct.2008.06.006
Eringen, 1983, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., 54, 4703, 10.1063/1.332803
Eringen, 2002
Faghidian, 2017, Unified formulations of the shear coefficients in Timoshenko beam theory, J. Eng. Mech. Trans. ASCE, 143
Faghidian, 2018, On non-linear flexure of beams based on non-local elasticity theory, Int. J. Eng. Sci., 124, 49, 10.1016/j.ijengsci.2017.12.002
Forest, 2012, Stress gradient continuum theory, Mech. Res. Commun., 40, 16, 10.1016/j.mechrescom.2011.12.002
Guo, 2016, Torsional vibration of carbon nanotube with axial velocity and velocity gradient effect, Int. J. Mech. Sci., 119, 88, 10.1016/j.ijmecsci.2016.09.036
Gurtin, 2010
Güven, 2014, A generalized nonlocal elasticity solution for the propagation of longitudinal stress waves in bars, Eur. J. Mech. Solid., 45, 75, 10.1016/j.euromechsol.2013.11.014
Hadjesfandiari, 2011, Couple stress theory for solids, Int. J. Solid Struct., 48, 2496, 10.1016/j.ijsolstr.2011.05.002
Haghani, 2017, Linear and nonlinear flexural analysis of higher-order shear deformation laminated plates with circular delamination, Acta Mech.
Kargarnovin, 2010, Application of the homotopy method for the analytic approach of the nonlinear free vibration analysis of the simple end beams using four engineering theories, Acta Mech., 212, 199, 10.1007/s00707-009-0253-5
Kargarnovin, 2010, Application of homotopy-Padé technique in limit analysis of circular plates under arbitrary rotational symmetric loading using von-Mises yield criterion, Commun. Nonlinear Sci. Numer. Simulat., 15, 1080, 10.1016/j.cnsns.2009.05.030
Khodabakhshi, 2015, A unified integro-differential nonlocal model, Int. J. Eng. Sci., 95, 60, 10.1016/j.ijengsci.2015.06.006
Li, 2015, Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory, Int. J. Eng. Sci., 97, 84, 10.1016/j.ijengsci.2015.08.013
Li, 2016, Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material, Int. J. Eng. Sci., 107, 77, 10.1016/j.ijengsci.2016.07.011
Li, 2017, Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects, Int. J. Mech. Sci., 120, 159, 10.1016/j.ijmecsci.2016.11.025
Li, 2015, Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory, Compos. Struct., 133, 1079, 10.1016/j.compstruct.2015.08.014
Li, 2016, Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory, Int. J. Mech. Sci., 115–116, 135, 10.1016/j.ijmecsci.2016.06.011
Li, 2016, Free vibration analysis of nonlocal strain gradient beams made of functionally graded material, Int. J. Eng. Sci., 102, 77, 10.1016/j.ijengsci.2016.02.010
Li, 2016, Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory, Physica E, 75, 118, 10.1016/j.physe.2015.09.028
Li, 2017, Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory, Compos. Struct., 165, 250, 10.1016/j.compstruct.2017.01.032
Li, 2017, Nonlocal vibrations and stabilities in parametric resonance of axially moving viscoelastic piezoelectric nanoplate subjected to thermo-electro-mechanical forces, Composites Part B, 116, 153, 10.1016/j.compositesb.2017.01.071
Li, 2018, Size-dependent nonlinear vibration of beam-type porous materials with an initial geometrical curvature, Compos. Struct., 184, 1177, 10.1016/j.compstruct.2017.10.052
Liao, 2004
Liao, 2012
Liao, 2013
Lim, 2015, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, J. Mech. Phys. Solid., 78, 298, 10.1016/j.jmps.2015.02.001
Lopatin, 2016, An analytical expression for fundamental frequency of the composite lattice cylindrical shell with clamped edges, Compos. Struct., 141, 232, 10.1016/j.compstruct.2016.01.053
Lu, 2017, Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory, Int. J. Eng. Sci., 116, 12, 10.1016/j.ijengsci.2017.03.006
Lu, 2017, A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms, Int. J. Eng. Sci., 119, 265, 10.1016/j.ijengsci.2017.06.024
Marotti de Sciarra, 2014, A new nonlocal bending model for Euler-Bernoulli nanobeams, Mech. Res. Commun., 62, 25, 10.1016/j.mechrescom.2014.08.004
Mindlin, 1965, Second gradient of strain and surface-tension in linear elasticity, Int. J. Solid Struct., 1, 417, 10.1016/0020-7683(65)90006-5
Mindlin, 1968, On first strain gradient theories in linear elasticity, Int. J. Solid Struct., 4, 109, 10.1016/0020-7683(68)90036-X
Papargyri-Beskou, 2003, Dynamic analysis of gradient elastic flexural beams, Struct. Eng. Mech., 15, 705, 10.12989/sem.2003.15.6.705
Polizzotto, 2001, Nonlocal elasticity and related variational principles, Int. J. Solid Struct., 38, 7359, 10.1016/S0020-7683(01)00039-7
Polizzotto, 2003, Gradient elasticity and nonstandard boundary conditions, Int. J. Solid Struct., 40, 7399, 10.1016/j.ijsolstr.2003.06.001
Polizzotto, 2003, Unified thermodynamic framework for nonlocal/gradient continuum theories, Eur. J. Mech. Solid., 22, 651, 10.1016/S0997-7538(03)00075-5
Polizzotto, 2012, A gradient elasticity theory for second-grade materials and higher order inertia, Int. J. Solid Struct., 49, 2121, 10.1016/j.ijsolstr.2012.04.019
Polizzotto, 2013, A second strain gradient elasticity theory with second velocity gradient inertia–Part I: constitutive equations and quasi-static behavior, Int. J. Solid Struct., 50, 3749, 10.1016/j.ijsolstr.2013.06.024
Polizzotto, 2013, A second strain gradient elasticity theory with second velocity gradient inertia–Part II: dynamic behavior, Int. J. Solid Struct., 50, 3766, 10.1016/j.ijsolstr.2013.07.026
Polizzotto, 2014, Stress gradient versus strain gradient constitutive models within elasticity, Int. J. Solid Struct., 51, 1809, 10.1016/j.ijsolstr.2014.01.021
Polizzotto, 2015, A unifying variational framework for stress gradient and strain gradient elasticity theories, Eur. J. Mech. Solid., 49, 430, 10.1016/j.euromechsol.2014.08.013
Polizzotto, 2016, Variational formulations and extra boundary conditions within stress gradient elasticity theory with extensions to beam and plate models, Int. J. Solid Struct., 80, 405, 10.1016/j.ijsolstr.2015.09.015
Polizzotto, 2017, A hierarchy of simplified constitutive models within isotropic strain gradient elasticity, Eur. J. Mech. Solid., 61, 92, 10.1016/j.euromechsol.2016.09.006
Raees, 2017, Homotopy shear band solutions in gradient plasticity, Z. Naturforsch., 72, 477, 10.1515/zna-2016-0475
Rao, 2007
Reddy, 2017
Reissner, 1985, Reflections on the theory of elastic plates, Appl. Mech. Rev., 38, 1453, 10.1115/1.3143699
Reissner, 1986, On a mixed variational theorem and on a shear deformable plate theory, Int. J. Numer. Meth. Eng., 23, 193, 10.1002/nme.1620230203
Romano, 2016, Comment on the paper “exact solution of Eringen's nonlocal integral model for bending of Euler–Bernoulli and Timoshenko beams” by meral tuna and mesut kirca, Int. J. Eng. Sci., 109, 240, 10.1016/j.ijengsci.2016.09.009
Romano, 2017, Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams, Composites Part B, 114, 184, 10.1016/j.compositesb.2017.01.008
Romano, 2017, Nonlocal elasticity in nanobeams: the stress-driven integral model, Int. J. Eng. Sci., 115, 14, 10.1016/j.ijengsci.2017.03.002
Romano, 2016, Micromorphic continua: non-redundant formulations, Continuum Mech. Therm., 28, 1659, 10.1007/s00161-016-0502-5
Romano, 2017, Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams, Int. J. Mech. Sci., 121, 151, 10.1016/j.ijmecsci.2016.10.036
Romano, 2017, On nonlocal integral models for elastic nano-beams, Int. J. Mech. Sci., 131–132, 490, 10.1016/j.ijmecsci.2017.07.013
Salehipour, 2015, Modified nonlocal elasticity theory for functionally graded materials, Int. J. Eng. Sci., 90, 44, 10.1016/j.ijengsci.2015.01.005
Shen, 2016, Torsion of a functionally graded material, Int. J. Eng. Sci., 119, 14, 10.1016/j.ijengsci.2016.09.003
Song, 2010, Effects of initial axial stress on waves propagating in carbon nanotubes using a generalized nonlocal model, Comput. Mater. Sci., 49, 518, 10.1016/j.commatsci.2010.05.043
Thai, 2017, A review of continuum mechanics models for size-dependent analysis of beams and plates, Compos. Struct., 177, 196, 10.1016/j.compstruct.2017.06.040
Tornabene, 2014, Static analysis of doubly-curved anisotropic shells and panels using CUF approach, differential geometry and differential quadrature method, Compos. Struct., 107, 675, 10.1016/j.compstruct.2013.08.038
Wu, 1992, Cohesive elasticity and surface phenomena, Q. Appl. Math., 50, 73, 10.1090/qam/1146625
Wu, 2011, RMVT-based meshless collocation and element-free Galerkin methods for the quasi-3D free vibration analysis of multilayered composite and FGM plates, Compos. Struct., 93, 10.1016/j.compstruct.2010.11.015
Wu, 2015, Reissner's mixed variational theorem-based nonlocal Timoshenko beam theory for a single-walled carbon nanotube embedded in an elastic medium and with various boundary conditions, Compos. Struct., 122, 390, 10.1016/j.compstruct.2014.11.073
Wu, 2011, RMVT-based meshless collocation and element-free Galerkin methods for the quasi-3D analysis of multilayered composite and FGM plates, Compos. Struct., 93, 923, 10.1016/j.compstruct.2010.07.001
Yang, 2002, Couple stress based strain gradient theory for elasticity, Int. J. Solid Struct., 39, 2731, 10.1016/S0020-7683(02)00152-X
Yang, 2017, Nonlinear dynamic characteristics of FGCNTs reinforced microbeam with piezoelectric layer based on unifying stress-strain gradient framework, Composites Part B, 111, 372, 10.1016/j.compositesb.2016.11.058
Zhang, 2010, Bending, buckling, and vibration of micro/nanobeams by hybrid nonlocal beam model, J. Eng. Mech., 136, 562, 10.1061/(ASCE)EM.1943-7889.0000107
Zhu, 2017, Twisting statics of functionally graded nanotubes using Eringen's nonlocal integral model, Compos. Struct., 178, 87, 10.1016/j.compstruct.2017.06.067
Zhu, 2017, Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity, Int. J. Mech. Sci., 2017, 639, 10.1016/j.ijmecsci.2017.09.030
Zhu, 2017, On longitudinal dynamics of nanorods, Int. J. Eng. Sci., 120, 129, 10.1016/j.ijengsci.2017.08.003
Zhu, 2017, Closed form solution for a nonlocal strain gradient rod in tension, Int. J. Eng. Sci., 119, 16, 10.1016/j.ijengsci.2017.06.019