Regulatory and Conventional CD4+ T Cells Show Differential Effects Correlating with PD-1 and B7-H1 Expression after Immunotherapy

Journal of Immunology - Tập 180 Số 5 - Trang 2981-2988 - 2008
Kory L. Alderson1, Qing Zhou1, Vanessa Berner1, Danice Wilkins1, Jonathan M. Weiss2, Bruce R. Blazar3, Renhao Li1, Robert H. Wiltrout2, Doug Redelman4, William J. Murphy1
1Department of Microbiology and Immunology and
2‡Laboratory of Experimental Immunology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702; and
3§Cancer Center and Department of Pediatrics, Division of Bone Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455
4†Department of Physiology and Cell Biology, University of Nevada, Reno, NV 89557;

Tóm tắt

Abstract Recently, our laboratory reported that secondary CD8+ T cell-mediated antitumor responses were impaired following successful initial antitumor responses using various immunotherapeutic approaches. Although immunotherapy stimulated significant increases in CD8+ T cell numbers, the number of CD4+ T cells remained unchanged. The current investigation revealed a marked differential expansion of CD4+ T cell subsets. Successful immunotherapy surprisingly resulted in an expansion of CD4+Foxp3+ regulatory T (Treg) cells concurrent with a reduction of conventional CD4+ T (Tconv) cells, despite the marked antitumor responses. Following immunotherapy, we observed differential up-regulation of PD-1 on the surface of CD4+Foxp3+ Treg cells and CD4+Foxp3− Tconv cells. Interestingly, it was the ligand for PD-1, B7-H1 (PDL-1), that correlated with Tconv cell loss after treatment. Furthermore, IFN-γ knockout (IFN-γ−/−) and IFN-γ receptor knockout (IFN-γR−/−) animals lost up-regulation of surface B7-H1 even though PD-1 expression of Tconv cells was not changed, and this correlated with CD4+ Tconv cell increases. These results suggest that subset-specific expansion may contribute to marked shifts in the composition of the T cell compartment, potentially influencing the effectiveness of some immunotherapeutic approaches that rely on IFN-γ.

Từ khóa


Tài liệu tham khảo

Murphy, W. J., L. Welniak, T. Back, J. Hixon, J. Subleski, N. Seki, J. M. Wigginton, S. E. Wilson, B. R. Blazar, A. M. Malyguine, et al 2003. Synergistic anti-tumor responses after administration of agonistic antibodies to CD40 and IL-2: coordination of dendritic and CD8+ cell responses. J. Immunol. 170: 2727-2733.

Berner, V., H. Liu, Q. Zhou, K. L. Alderson, K. Sun, J. M. Weiss, T. C. Back, D. L. Longo, B. R. Blazar, R. H. Wiltrout, et al 2007. IFN-γ mediates CD4+ T-cell loss and impairs secondary antitumor responses after successful initial immunotherapy. Nat. Med. 13: 354-360.

Bartholdy, C., S. O. Kauffmann, J. P. Christensen, A. R. Thomsen. 2007. Agonistic anti-CD40 antibody profoundly suppresses the immune response to infection with lymphocytic choriomeningitis virus. J. Immunol. 178: 1662-1670.

Perez-Diez, A., N. T. Joncker, K. Choi, W. F. Chan, C. C. Anderson, O. Lantz, P. Matzinger. 2007. CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood 109: 5346-5354.

Afzali, B., G. Lombardi, R. I. Lechler, G. M. Lord. 2007. The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clin. Exp. Immunol. 148: 32-46.

Curiel, T. J.. 2007. Tregs and rethinking cancer immunotherapy. J. Clin. Invest. 117: 1167-1174.

Ishida, Y., Y. Agata, K. Shibahara, T. Honjo. 1992. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11: 3887-3895.

Okazaki, T., Y. Iwai, T. Honjo. 2002. New regulatory co-receptors: inducible co-stimulator and PD-1. Curr. Opin. Immunol. 14: 779-782.

Martin-Orozco, N., Y. H. Wang, H. Yagita, C. Dong. 2006. Cutting edge: Programmed death (PD) ligand-1/PD-1 interaction is required for CD8+ T cell tolerance to tissue antigens. J. Immunol. 177: 8291-8295.

Keir, M. E., S. C. Liang, I. Guleria, Y. E. Latchman, A. Qipo, L. A. Albacker, M. Koulmanda, G. J. Freeman, M. H. Sayegh, A. H. Sharpe. 2006. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J. Exp. Med. 203: 883-895.

Goldberg, M. V., C. H. Maris, E. L. Hipkiss, A. S. Flies, L. Zhen, R. M. Tuder, J. F. Grosso, T. J. Harris, D. Getnet, K. A. Whartenby, et al 2007. Role of PD-1 and its ligand, B7–H1, in early fate decisions of CD8 T cells. Blood 110: 186-192.

Flies, D. B., L. Chen. 2007. The new B7s: playing a pivotal role in tumor immunity. J. Immunother. 30: 251-260.

Freeman, G. J., A. J. Long, Y. Iwai, K. Bourque, T. Chernova, H. Nishimura, L. J. Fitz, N. Malenkovich, T. Okazaki, M. C. Byrne, et al 2000. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192: 1027-1034.

Picca, C. C., J. Larkin, III, A. Boesteanu, M. A. Lerman, A. L. Rankin, A. J. Caton. 2006. Role of TCR specificity in CD4+CD25+ regulatory T-cell selection. Immunol. Rev. 212: 74-85.

Barao, I., A. M. Hanash, W. Hallett, L. A. Welniak, K. Sun, D. Redelman, B. R. Blazar, R. B. Levy, W. J. Murphy. 2006. Suppression of natural killer cell-mediated bone marrow cell rejection by CD4+CD25+ regulatory T cells. Proc. Natl. Acad. Sci. USA 103: 5460-5465.

Antony, P. A., N. P. Restifo. 2005. CD4+CD25+ T regulatory cells, immunotherapy of cancer, and interleukin-2. J. Immunother. 28: 120-128.

Purton, J. F., J. T. Tan, M. P. Rubinstein, D. M. Kim, J. Sprent, C. D. Surh. 2007. Antiviral CD4+ memory T cells are IL-15 dependent. J. Exp. Med. 204: 951-961.

Burkett, P. R., R. Koka, M. Chien, S. Chai, D. L. Boone, A. Ma. 2004. Coordinate expression and trans presentation of interleukin (IL)-15Rα and IL-15 supports natural killer cell and memory CD8+ T cell homeostasis. J. Exp. Med. 200: 825-834.

Sato, N., H. J. Patel, T. A. Waldmann, Y. Tagaya. 2007. The IL-15/IL-15Rα on cell surfaces enables sustained IL-15 activity and contributes to the long survival of CD8 memory T cells. Proc. Natl. Acad. Sci. USA 104: 588-593.

Shedlock, D. J., H. Shen. 2003. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300: 337-339.

Sun, J. C., M. J. Bevan. 2003. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300: 339-342.

Janssen, E. M., N. M. Droin, E. E. Lemmens, M. J. Pinkoski, S. J. Bensinger, B. D. Ehst, T. S. Griffith, D. R. Green, S. P. Schoenberger. 2005. CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature 434: 88-93.

Badovinac, V. P., K. A. Messingham, T. S. Griffith, J. T. Harty. 2006. TRAIL deficiency delays, but does not prevent, erosion in the quality of “helpless” memory CD8 T cells. J. Immunol. 177: 999-1006.

Chemnitz, J. M., D. Eggle, J. Driesen, S. Classen, J. L. Riley, S. Debey-Pascher, M. Beyer, A. Popov, T. Zander, J. L. Schultze. 2007. RNA-fingerprints provide direct evidence for the inhibitory role of TGFβ and PD-1 on CD4+ T cells in Hodgkin’s lymphoma. Blood 110: 3226-3233.

Colley, D. G., L. E. Sasser, A. M. Reed. 2005. PD-L2+ dendritic cells and PD-1+CD4+ T cells in schistosomiasis correlate with morbidity. Parasite Immunol. 27: 45-53.

Hatachi, S., Y. Iwai, S. Kawano, S. Morinobu, M. Kobayashi, M. Koshiba, R. Saura, M. Kurosaka, T. Honjo, S. Kumagai. 2003. CD4+PD-1+ T cells accumulate as unique anergic cells in rheumatoid arthritis synovial fluid. J. Rheumatol. 30: 1410-1419.

Zhang, J. Y., Z. Zhang, X. Wang, J. L. Fu, J. Yao, Y. Jiao, L. Chen, H. Zhang, J. Wei, L. Jin, et al 2007. PD-1 up-regulation is correlated with HIV-specific memory CD8+ T-cell exhaustion in typical progressors but not in long-term nonprogressors. Blood 109: 4671-4678.

Dong, H., S. E. Strome, D. R. Salomao, H. Tamura, F. Hirano, D. B. Flies, P. C. Roche, J. Lu, G. Zhu, K. Tamada, et al 2002. Tumor-associated B7–H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8: 793-800.

Keir, M. E., L. M. Francisco, A. H. Sharpe. 2007. PD-1 and its ligands in T-cell immunity. Curr. Opin. Immunol. 19: 309-314.

Grakoui, A., E. John Wherry, H. L. Hanson, C. Walker, R. Ahmed. 2006. Turning on the off switch: regulation of anti-viral T cell responses in the liver by the PD-1/PD-L1 pathway. J. Hepatol. 45: 468-472.

Khoury, S. J., M. H. Sayegh. 2004. The roles of the new negative T cell costimulatory pathways in regulating autoimmunity. Immunity 20: 529-538.

Blazar, B. R., B. M. Carreno, A. Panoskaltsis-Mortari, L. Carter, Y. Iwai, H. Yagita, H. Nishimura, P. A. Taylor. 2003. Blockade of programmed death-1 engagement accelerates graft-versus-host disease lethality by an IFN-γ-dependent mechanism. J. Immunol. 171: 1272-1277.

Hori, J., M. Wang, M. Miyashita, K. Tanemoto, H. Takahashi, T. Takemori, K. Okumura, H. Yagita, M. Azuma. 2006. B7-H1-induced apoptosis as a mechanism of immune privilege of corneal allografts. J. Immunol. 177: 5928-5935.

Beswick, E. J., I. V. Pinchuk, S. Das, D. W. Powell, V. E. Reyes. 2007. B7-H1 expression on gastric epithelial cells after Helicobacter pylori exposure promotes the development of CD4+CD25+FoxP3+ regulatory T cells. Infect. Immun. 75: 4334-4341.

Tsushima, F., S. Yao, T. Shin, A. Flies, S. Flies, H. Xu, K. Tamada, D. M. Pardoll, L. Chen. 2007. Interaction between B7-H1 and PD-1 determines initiation and reversal of T-cell anergy. Blood 110: 180-185.

Maker, A. V., P. Attia, S. A. Rosenberg. 2005. Analysis of the cellular mechanism of antitumor responses and autoimmunity in patients treated with CTLA-4 blockade. J. Immunol. 175: 7746-7754.