Regulation of the mechanism of Type-II NADH: Quinone oxidoreductase from S. aureus

Redox Biology - Tập 16 - Trang 209-214 - 2018
Filipa V. Sena1, Filipe M. Sousa1, A. Sofia F. Oliveira2, Cláudio M. Soares1, Teresa Catarino3, Manuela M. Pereira1,4
1Instituto de Tecnologia Química e Biológica – António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
2School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
3Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
4University of Lisbon, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8, 1749-016 Lisboa, Portugal

Tài liệu tham khảo

Piano, 2017, Flavins as covalent catalysts: new mechanisms emerge, Trends Biochem. Sci., 42, 457, 10.1016/j.tibs.2017.02.005 Dijkman, 2013, Flavoprotein oxidases: classification and applications, Appl. Microbiol. Biotechnol., 97, 5177, 10.1007/s00253-013-4925-7 Landry, 2017, H2S oxidation by nanodisc-embedded human sulfide quinone oxidoreductase, J. Biol. Chem., 292, 11641, 10.1074/jbc.M117.788547 Blaza, 2017, The mechanism of catalysis by type-II NADH:quinone oxidoreductases, Sci. Rep., 7, 10.1038/srep40165 Sena, 2015, Type-II NADH: quinone oxidoreductase from Staphylococcus aureus has two distinct binding sites and is rate limited by quinone reduction, Mol. Microbiol., 98, 272, 10.1111/mmi.13120 Elguindy, 2015, Apoptosis-inducing factor (AIF) and its family member protein, AMID, are rotenone-sensitive NADH:ubiquinone oxidoreductases (NDH-2), J. Biol. Chem., 290, 20815, 10.1074/jbc.M115.641498 Abramovitz, 1976, Interaction of phenols with old yellow enzyme. Physical evidence for charge transfer complexes, J. Biol. Chem., 251, 5327, 10.1016/S0021-9258(17)33165-4 Gao, 2007, Mechanism of flavin reduction in the alkanesulfonate monooxygenase system, Biochim. Biophys. Acta - Proteins Proteom., 1774, 359, 10.1016/j.bbapap.2006.12.006 Dmitrenko, 2003, Effect of a charge-transfer interaction on the catalytic activity of Acyl-CoA dehydrogenase: a theoretical study of the role of oxidized flavin, J. Phys. Chem. B, 107, 13229, 10.1021/jp0348631 Li, 2013, Dissecting the kinetics of the NADP+-FADH2 charge transfer complex and flavin semiquinones in neuronal nitric oxide synthase, J. Inorg. Biochem., 124, 1, 10.1016/j.jinorgbio.2013.03.008 Cook, 2014, Energetics of pathogenic bacteria and opportunities for drug development, Adv. Microb. Physiol., 65, 1, 10.1016/bs.ampbs.2014.08.001 Ojha, 2007, Evolution of function in the “two dinucleotide binding domains” flavoproteins, PLoS Comput. Biol., 3, 1268, 10.1371/journal.pcbi.0030121 Yang, 2017, Target elucidation by cocrystal structures of nadh-ubiquinone oxidoreductase of Plasmodium falciparum (PfNDH2) with small molecule to eliminate drug-resistant malaria, J. Med. Chem., 60, 1994, 10.1021/acs.jmedchem.6b01733 Heikal, 2014, Structure of the bacterial type II NADH dehydrogenase: a monotopic membrane protein with an essential role in energy generation, Mol. Microbiol., 91, 950, 10.1111/mmi.12507 Feng, 2012, Structural insight into the type-II mitochondrial NADH dehydrogenases, Nature, 491, 478, 10.1038/nature11541 Shirude, 2012, Quinolinyl pyrimidines: potent inhibitors of NDH-2 as a novel class of anti-TB agents, ACS Med. Chem. Lett., 3, 736, 10.1021/ml300134b Yano, 2006, Steady-state kinetics and inhibitory action of antitubercular phenothiazines on Mycobacterium tuberculosis Type-II NADH-menaquinone oxidoreductase (NDH-2), J. Biol. Chem., 281, 11456, 10.1074/jbc.M508844200 Sellamuthu, 2017, Type-II NADH Dehydrogenase (NDH-2): a promising therapeutic target for antitubercular and antibacterial drug discovery, Expert Opin. Ther. Targets, 21, 559, 10.1080/14728222.2017.1327577 THAUER, 1977, Energy conservation in chemotrophic anaerobic bacteria, Microbiol. Mol. Biol. Rev., 41, 100 Conant, 1924, Reduction potentials of quinones. II. The potentials of certain derivatives of benzoquinone, naphthoquinone and anthraquinone, J. Am. Chem. Soc., 46, 1858, 10.1021/ja01673a014 Nasiri, 2009, The correlation of cathodic peak potentials of vitamin K3 derivatives and their calculated electron affinities. The role of hydrogen bonding and conformational changes, Biochim. Biophys. Acta - Bioenerg., 1787, 601, 10.1016/j.bbabio.2009.02.013 Marreiros, 2017, Structural and Functional insights into the catalytic mechanism of the Type II NADH:quinone oxidoreductase family, Sci. Rep., 7, 10.1038/srep42303 Sousa, 2017, The key role of glutamate 172 in the mechanism of type II NADH:quinone oxidoreductase of Staphylococcus aureus, Biochim. Biophys. Acta - Bioenerg., 1858, 823, 10.1016/j.bbabio.2017.08.002 Rosário, 2015, Expression, purification, crystallization and preliminary X-ray diffraction analysis of a type II NADH:quinone oxidoreductase from the human pathogen Staphylococcus aureus, Acta Cryst., 71, 477 Aliverti, 1999, Identifying and Quantitating FAD and FMN in Simple and in Iron-Sulfur-Containing Flavoproteins, 9 Teixeira, 2002, Studies of the reduction and protonation behavior of tetraheme cytochromes using atomic detail, J. Biol. Inorg. Chem., 7, 200, 10.1007/s007750100287 Baptista, 2001, Some theoretical and computational aspects of the inclusion of proton isomerism in the protonation equilibrium of proteins, J. Phys. Chem. B, 105, 293, 10.1021/jp002763e Bashford, 1992, Electrostatic calculations of the pKa values of ionizable groups in bacteriorhodopsin, J. Mol. Biol., 224, 473, 10.1016/0022-2836(92)91009-E Bashford, 1990, pKa's of ionizable groups in proteins: atomic detail from a continuum electrostatic model, Biochemistry, 29, 10219, 10.1021/bi00496a010 D. Bashford, An object-oriented programming suite for electrostatic effects in biological molecules: An experience report on the MEAD project, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics): 1997: pp. 233–240. https://dx.doi.org/10.1007/3-540-63827-X_66. Sakurai, 1966, Charge-transfer complexes of nicotinamide-adenine dinucleotide analogues and flavin mononucleotide, Biochim. Biophys. Acta - Biophys. Incl. Photosynth., 112, 459, 10.1016/0926-6585(66)90248-2 Sakurai, 1965, Charge-transfer complexes of nicotinamide-adenine dinucleotide analogues and flavin mononucleotide, Acta Biophys., 112, 459