Quy định của quá trình quang hợp bởi brassinosteroid trong thực vật

Springer Science and Business Media LLC - Tập 40 - Trang 1-15 - 2018
Husna Siddiqui1, Shamsul Hayat1, Andrzej Bajguz2
1Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
2Department of Plant Biochemistry and Toxicology, Faculty of Biology and Chemistry, Institute of Biology, University of Bialystok, Bialystok, Poland

Tóm tắt

Brassinosteroid (BRs) được coi là hormone thực vật, là một nhóm các dẫn xuất sterol polyhydroxyl hóa tự nhiên tồn tại ở mọi loài thực vật. Sự phát triển tổng thể của thực vật phụ thuộc vào quá trình quang hợp rất cơ bản và quan trọng. BRs được tìm thấy có khả năng ngăn chặn sự mất mát của các sắc tố quang hợp bằng cách kích hoạt hoặc khuyến khích sự tổng hợp của các enzyme liên quan đến quá trình tổng hợp chlorophyll. BRs đóng vai trò quan trọng trong việc duy trì hiệu suất PS II bằng cách ổn định protein D1. Chúng giúp vượt qua những hạn chế của khí khổng và nâng cao hiệu suất của việc cố định carbon quang hợp. BRs cũng hoạt động ở nhiều mức độ phản ứng ánh sáng và tối dẫn đến việc tổng hợp carbohydrate được cải thiện. Do đó, việc tập trung và thu thập thông tin liên quan đến các tác động khác nhau của BRs đối với quá trình quang hợp và các thuộc tính liên quan của nó là rất quan trọng. Bài đánh giá hiện tại đề cập đến tác động của BRs đối với quang hợp dưới điều kiện bình thường cũng như điều kiện căng thẳng.

Từ khóa

#brassinosteroid #quang hợp #chlorophyll #enzyme #carbon quang hợp

Tài liệu tham khảo

Adak MK, Gupta DKD (1999) Photosynthesis and net assimilation rate of rice cultivars as influenced by waterlogging. Indian J Plant Physiol 4(4):334–336 Alam MM, Hayat S, Ali B et al (2007) Effect of 28-homobrassinolide treatment on nickel toxicity in Brassica juncea. Photosynthetica 45(1):139–142 Ali B, Hayat S, Ahmad A (2005) Response of germinating seeds of Cicer arietinum to 28-homobrassinolide and/or potassium. Gen Appl Plant Physiol 31(1–2):55–63 Ali B, Hayat S, Ahmad A (2007) 28-Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum L.). Environ Exp Bot 59:217–223 Ali B, Hasan SA, Hayat S et al (2008a) A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environ Exp Bot 62(2):153–159 Ali B, Hayat S, Fariduddin Q et al (2008b) 24-Epibrassinolide protects against the stress generated by salinity and nickel in Brassica juncea. Chemosphere 72(9):1387–1392 Allen DJ, Ort DR (2001) Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci 6(1):36–42 Alyemeni MN, Al-Quwaiz SM (2016) Effect of 28-homobrassinolide on the performance of sensitive and resistant varieties of Vigna radiata. Saudi J Biol Sci 23(6):698–705 Anuradha S, Rao SSR (2007) The effect of brassinosteroids on radish (Raphanus sativus L.) seedlings growing under cadmium stress. Plant Soil Environ 53(11):465 Anuradha S, Rao SSR (2009) Effect of 24-epibrassinolide on the photosynthetic activity of radish plants under cadmium stress. Photosynthetica 47(2):317–320 Arfan M, Athar HR, Ashraf M (2007) Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J Plant Physiol 164(6):685–694 Asha A, Lingakumar K (2015) Effect of 24-epibrassinolide on the morphological and biochemical constitutions Vigna unguiculata (L.) seedlings. Ind J Sci Res Technol 3(1):35–39 Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199(5):361–376 Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51(2):163–190 Ashraf M, Sultana R (2000) Combination effect of NaCl salinity and nitrogen form on mineral composition of sunflower plants. Biol Plant 43(4):615–619 Avudainayagam S, Megharaj M, Owens G et al (2003) Chemistry of chromium in soils with emphasis on tannery waste sites. Reviews of environmental contamination and toxicology. Springer, New York, pp 53–91 Badger MR, Price GD (1994) The role of carbonic anhydrase in photosynthesis. Annu Rev Plant Biol 45(1):369–392 Bai MY, Shang JX, Oh E et al (2012) Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat Cell Biol 14:810–817 Bajguz A (2009) Brassinosteroid enhanced the level of abscisic acid in Chlorella vulgaris subjected to short-term heat stress. J Plant Physiol 166(8):882–886 Bajguz A, Czerpak R (1998) Physiological and biochemical role of brassinosteroids and their structure activity relationship in the green alga Chlorella vulgaris Beijerinck (Chlorophyceae). Plant Growth Regul 17:131–139 Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47(1):1–8 Bancos S, Nomura T, Sato T, Molnar G, Bishop GJ, Koncz C, Yokota T, Nagy F, Szekeres M (2002) Regulation of transcript levels of the Arabidopsis cytochrome P450 genes involved in brassinosteroid biosynthesis. Plant Physiol 130:504–513 Bancos S, Szatmari AM, Castle J, Kozma-Bognar L, Shibata K, Yokota T, Bishop GJ, Nagy F, Szekeres M (2006) Diurnal regulation of the brassinosteroid-biosynthetic CPD gene in Arabidopsis. Plant Physiol 141:299–309 Bao F, Shen J, Brady SR, Muday GK, Asami T, Yang Z (2004) Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol 134:1624–1631 Barceló JUAN, Poschenrieder C (1990) Plant water relations as affected by heavy metal stress: a review. J Plant Nutr 13(1):1–37 Behnamnia M, Kalantari KM, Rezanejad F (2009) Exogenous application of brassinosteroid alleviates drought-induced oxidative stress in Lycopersicon esculentum L. Gen Appl Plant Physiol 35:22–34 Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31(1):491–543 Bhatia DS, Kaur J (1997) Effect of homobrassinolide and humicil on chlorophyll content, hill activity and yield components in mungbean Vigna radiata (L.) Wilczek. Phytomorphology 47(4):421–426 Braun P, Wild A (1984) The influence of brassinosteroid on growth and parameters of photosynthesis of wheat and mustard plants. J Plant Physiol 116(3):189–196 Chen LM, Lin CC, Kao CH (2000) Copper toxicity in rice seedlings: changes in antioxidative enzyme activities, H2O2 level, and cell wall peroxidase activity in roots. Bot Bull Acad Sin 41:99–103 Chen C, Huang D, Liu J (2009) Functions and toxicity of nickel in plants: recent advances and future prospects. CLEAN Soil Air Water 37(4–5):304–313 Choudhary SP, Kanwar M, Bhardwaj R et al (2012a) Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS ONE 7(3):e33210 Choudhary SP, Yu JQ, Yamaguchi-Shinozaki K et al (2012b) Benefits of brassinosteroid crosstalk. Trends Plant Sci 17:594–605 Chugh LK, Gupta VK, Sawhney SK (1992) Effect of cadmium on enzymes of nitrogen metabolism in pea seedlings. Phytochemistry 31(2):395–400 Clouse SD, Langford M, McMorris TC (1996) A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol 111(3):671–678 Coste S, Baraloto C, Leroy C et al (2010) Assessing foliar chlorophyll contents with the SPAD-502 chlorophyll meter: a calibration test with thirteen tree species of tropical rainforest in French Guiana. Ann For Sci 67(6):607 Dalio RJD, Pinheiro HP, Sodek L et al (2011) The effect of 24-epibrassinolide and clotrimazole on the adaptation of Cajanus cajan (L.) Millsp. to salinity. Acta Physiol Plant 33(5):1887–1896 Dhaubhadel S, Chaudhary S, Dobinson KF et al (1999) Treatment with 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant Mol Biol 40(2):333–342 Domagalska MA, Schomburg FM, Amasino RM, Vierstra RD, Nagy F, Davis SJ (2007) Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering. Development 134:2841–2850 Dubey RS (2005) Photosynthesis in plants under stressful conditions. In: Pessarakli M (ed) Handbook of photosynthesis, 2nd edn. CRC Press/Taylor and Francis Group, New York, pp 717–737 Ekinci M, Yildirim E, Dursun A et al (2012) Mitigation of salt stress in lettuce (Lactuca sativa L. var. Crispa) by seed and foliar 24-epibrassinolide treatments. HortScience 47(5):631–636 Ernst WHO (1980) Biochemical aspects of cadmium in plants. In: Nriagu JO (ed) Cadmium in the environment, Part 1. John Wiley, New York, pp 639–653 Esk M, Esk A (2013) Effects of 28-homobrassinolide on growth, photosynthesis and essential oil content of Satureja khuzestanica. Int J Plant Physiol Biochem 5(3):36–41 Farazi E, Afshari H, Abadi HH (2015) Effect of different concentrations of brassinosteroid on physiomorphological characteristics of five pistachio genotypes (Pistacia vera L.). J Nuts 6(2):143–153 Fariduddin Q, Ahmad A, Hayat S et al (2000) The response of chickpea, raised from the seeds pre-treated with 28-homobrassinolide. In: National seminar on plant physiological paradigm for fostering agro and biotechnology and augmenting environmental productivity in millennium, p 134 Fariduddin Q, Ahmad A, Hayat S (2003) Photosynthetic response of Vigna radiata to pre-sowing seed treatment with 28-homobrassinolide. Photosynthetica 41(2):307–310 Fariduddin Q, Ahmad A, Hayat S (2004) Responses of Vigna radiata to foliar application of 28-homobrassinolide and kinetin. Biol Plant 48(3):465–468 Fariduddin Q, Yusuf M, Hayat S et al (2009) Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. Environ Exp Bot 66:418–424 Fariduddin Q, Yusuf M, Chalkoo S et al (2011) 28-homobrassinolide improves growth and photosynthesis in Cucumis sativus L. through an enhanced antioxidant system in the presence of chilling stress. Photosynthetica 49(1):55–64 Fariduddin Q, Khalil RR, Mir BA et al (2013) 24-Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress. Environ Monit Assess 185(9):7845–7856 Farooq M, Wahid A, Basra SMA (2009) Improving water relations and gas exchange with brassinosteroids in rice under drought stress. J Agron Crop Sci 195(4):262–269 Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55(396):307–319 Fujita S, Ohnishi T, Watanabe B, Yokota T, Takatsuto S, Fujioka S, Yoshida S, Sakata K, Mizutani M (2006) Arabidopsis CYP90B1 catalyses the early C-22 hydroxylation of C-27, C-28 and C-29 sterols. Plant J 45:765–774 Gabr MA, Fathi MA, Azza IM et al (2011) Influences of some chemical substances used to induce early harvest of ‘Canino’ apricot trees. Nat Sci 9(8):59–65 Grove MD, Spencer GF, Rohwedder WK et al (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281:216–217 Gruszka D (2013) The brassinosteroid signaling pathway-new key players and interconnections with other signaling networks crucial for plant development and stress tolerance. Int J Mol Sci 14(5):8740–8774 Gudesblat GE, Schneider-Pizon J, Betti C, Mayerhofer J, Vanhoutte I, van Dongen W, Boeren S, Zhiponova M, de Vries S, Jonak C, Russinova E (2012) SPEECHLESS integrates brassinosteroid and stomata signalling pathways. Nat Cell Biol 14:548–554 Gururani MA, Upadhyaya CP, Strasser RJ et al (2012) Physiological and biochemical responses of transgenic potato plants with altered expression of PSII manganese stabilizing protein. Plant Physiol Biochem 58:182–194 Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radical, transition metals and disease. Biochem J 219:1–14 Hamada K (1986) Brassinolide in crop cultivation. Plant growth regulators in agriculture. FFTC Book Ser 34:188–196 Han YJ, Song PS, Kim JI (2007) Phytochrome-mediated photomorphogenesis in plants. J Plant Biol 50:230–240 Hanano S, Domagalska MA, Nagy F, Davis SJ (2006) Multiple phytohormones influence distinct parameters of the plant circadian clock. Genes Cells 11:1381–1392 Hayat S, Ahmad A, Mobin M et al (2001a) Carbonic anhydrase, photosynthesis, and seed yield in mustard plants treated with phytohormones. Photosynthetica 39(1):111–114 Hayat S, Ahmad A, Mobin M et al (2001b) Photosynthetic rate, growth, and yield of mustard plants sprayed with 28-homobrassinolide. Photosynthetica 38(3):469–471 Hayat S, Ali B, Hasan SA et al (2007) Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot 60(1):33–41 Hayat S, Hasan SA, Hayat Q et al (2010) Brassinosteroids protect Lycopersicon esculentum from cadmium toxicity applied as shotgun approach. Protoplasma 239(1–4):3–14 Hayat S, Yadav S, Wani AS et al (2011) Comparative effect of 28-homobrassinolide and 24-epibrassinolide on the growth, carbonic anhydrase activity and photosynthetic efficiency of Lycopersicon esculentum. Photosynthetica 49(3):397–404 Hayat S, Hayat Q, Alyemeni MN et al (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466 He JX, Gendron JM, Sun Y et al (2005) BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307:1634–1638 Holá D, Rothová O, Kočová M et al (2010) The effect of brassinosteroids on the morphology, development and yield of field-grown maize. Plant Growth Regul 61(1):29–43 Hopkins WJ (1995) Introduction to plant physiology. Wiley, New York Hu WH, Yan XH, Xiao YA et al (2013a) 24-Epibrassinosteroid alleviate drought-induced inhibition of photosynthesis in Capsicum annuum. Sci Hortic 150:232–237 Hu YJ, Shi LX, Sun W et al (2013b) Effects of abscisic acid and brassinolide on photosynthetic characteristics of Leymus chinensis from Songnen plain grassland in Northeast China. Bot Stud 54(1):42 Janeczko A, Koscielniak J, Pilipowicz M et al (2005) Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. Photosynthetica 43(2):293–298 Janeczko A, Gullner G, Skoczowski A et al (2007) Effects of brassinosteroid infiltration prior to cold treatment on ion leakage and pigment contents in rape leaves. Biol Plant 51(2):355–358 Janeczko A, Gruszka D, Pociecha E et al (2016) Physiological and biochemical characterisation of watered and drought-stressed barley mutants in the HvDWARF gene encoding C6-oxidase involved in brassinosteroid biosynthesis. Plant Physiol Biochem 99:126–141 Jiang YP, Cheng F, Zhou YH et al (2012) Hydrogen peroxide functions as a secondary messenger for brassinosteroids-induced CO2 assimilation and carbohydrate metabolism in Cucumis sativus. J Zhejiang Univ Sci B 13(10):811–823 Kapoor D, Rattan A, Gautam V et al (2014) 24-Epibrassinolide mediated changes in photosynthetic pigments and antioxidative defence system of radish seedlings under cadmium and mercury stress. J Stress Physiol Biochem 10(3):110–121 Khan S, Cao Q, Zheng YM et al (2008) Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ Pollut 152(3):686–692 Kim TW, Guan S, Sun Y et al (2009) Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat Cell Biol 11:1254–1260 Kim TW, Michniewicz M, Bergmann DC et al (2012) Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature 482:419–422 Kinoshita T, Cano-Delgado A, Seto H et al (2005) Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433:167–171 Koca H, Bor M, Özdemir F et al (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60(3):344–351 Krumova S, Zhiponova M, Dankov K et al (2013) Brassinosteroids regulate the thylakoid membrane architecture and the photosystem II function. J Photochem Photobiol B Biol 126:97–104 Küpper H, Götz B, Mijovilovich A et al (2009) Complexation and toxicity of copper in higher plants. I. Characterization of copper accumulation, speciation, and toxicity in Crassula helmsii as a new copper accumulator. Plant Physiol 151(2):702–714 Li J, Nam KH (2002) Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science 295:1299–1301 Li L, Xu J, Xu ZH, Xue HW (2005) Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. Plant Cell 17:2738–2753 Li TY, Zhang Y, Liu H et al (2010) Stable expression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1, and salt tolerance in transgenic soybean for over six generations. Chin Sci Bull 55(12):1127–1134 Li YH, Liu YJ, Xu XL et al (2012) Effect of 24-epibrassinolide on drought stress-induced changes in Chorispora bungeana. Biol Plant 56(1):192–196 Li XJ, Guo X, Zhou YH et al (2016) Overexpression of a brassinosteroid biosynthetic gene dwarf enhances photosynthetic capacity through activation of Calvin cycle enzymes in tomato. BMC Plant Biol 16(1):33 Maestri E, Klueva N, Perrotta C et al (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol Biol 48(5–6):667–681 Maity U, Bera AK (2009) Effect of exogenous application of brassinolide and salicylic acid on certain physiological and biochemical aspects of green gram (Vigna radiata L. Wilczek). Indian J Agric Res 43(3):194–199 Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, New York Mohanty N, Vass I, Demeter S (1989) Impairment of photosystem 2 activity at the level of secondary quinone electron acceptor in chloroplasts treated with cobalt, nickel and zinc ions. Physiol Plant 76(3):386–390 Moroney JV, Bartlett SG, Samuelsson G (2001) Carbonic anhydrases in plants and algae. Plant Cell Environ 24:141–153 Mossor-Pietraszewska T (2001) Effect of aluminium on plant growth and metabolism. Acta Biochim Pol Engl Edit 48(3):673–686 Nath K, Jajoo A, Poudyal RS et al (2013) Towards a critical understanding of the photosystem II repair mechanism and its regulation during stress conditions. FEBS Lett 587:3372–3381 Nellaepalli S, Zsiros O, Toth T et al (2014) Heat- and light-induced detachment of the light harvesting complex from isolated photosystem I supercomplexes. J Photochem Photobiol B Biol 137:13–20 Nishiyama Y, Murata N (2014) Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl Microbiol Biotechnol 98:8777–8796 Nishiyama Y, Allakhverdiev SI, Murata N (2011) Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiol Plant 142:35–46 Noctor G, Mhamdi A, Foyer CH (2014) The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol 164:1636–1648 Ogweno JO, Song XS, Shi K et al (2008) Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J Plant Growth Regul 27(1):49–57 Oh MH, Wang X, Wu X et al (2010) Autophosphorylation of Tyr-610 in the receptor kinase BAK1 plays a role in brassinosteroid signaling and basal defense gene expression. Proc Natl Acad Sci 107:17827–17832 Oh MH, Sun J, Oh DH et al (2011) Enhancing Arabidopsis leaf growth by engineering the BRASSINOSTEROID INSENSITIVE1 receptor kinase. Plant Physiol 157:120–131 Pan J, Lin S, Woodbury NW (2012) Bacteriochlorophyll excited-state quenching pathways in bacterial reaction centres with the primary donor oxidized. J Phys Chem B 116(6):2014–2022 Pandey DM, Goswami CL, Kumar B (2001) Hormonal regulation of photosynthetic enzymes in cotton under water stress. Photosynthetica 38(3):403–407 Pareek A, Singla SL, Grover A (1998) Protein alterations associated with salinity, desiccation, high and low temperature stresses and abscisic acid application in lal nakanda, a drought tolerant rice cultivar. Curr Sci 75(11):1170–1174 Peng P, Yan Z, Zhu Y, Li J (2008) Regulation of the Arabidopsis GSK3-like kinase BRASSINOSTEROID-INSENSITIVE 2 through proteasome-mediated protein degradation. Mol Plant 1:338–346 Peng H, Zhao J, Neff MM (2015) ATAF2 integrates Arabidopsis brassinosteroid inactivation and seedling photomorphogenesis. Development 142:4129–4138 Perveen S, Shahbaz M, Ashraf M (2010) Regulation in gas exchange and quantum yield of photosystem II (PSII) in salt-stressed and non-stressed wheat plants raised from seed treated with triacontanol. Pak J Bot 42:3073–3081 Pinheiro HA, Silva JV, Endres L (2008) Leaf gas exchange, chloroplastic pigments and dry matter accumulation in castor bean (Ricinus communis L.) seedlings subjected to salt stress conditions. Ind Crops Prod 27(3):385–392 Piñol R, Simón E (2009) Effect of 24-epibrassinolide on chlorophyll fluorescence and photosynthetic CO2 assimilation in Vicia faba plants treated with the photosynthesis-inhibiting herbicide terbutryn. J Plant Growth Regul 28(2):97–105 Pociecha E, Dziurka M, Oklestkova J et al (2016) Brassinosteroids increase winter survival of winter rye (Secale cereale L.) by affecting photosynthetic capacity and carbohydrate metabolism during the cold acclimation process. Plant Growth Regul 80:127–135 Pociecha E, Dziurka D, Waligórski P et al (2017) 24-Epibrassinolide pre-treatment modifies cold-induced photosynthetic acclimation mechanisms and phytohormone response of perennial ryegrass in cultivar-dependent manner. J Plant Growth Regul 36:618–628 Portis AR Jr (1992) Regulation of ribulose 1, 5-bisphosphate carboxylase/oxygenase activity. Annu Rev Plant Biol 43(1):415–437 Poschenrieder C, Gunse B, Barceló J (1989) Influence of cadmium on water relations, stomatal resistance, and abscisic acid content in expanding bean leaves. Plant Physiol 90(4):1365–1371 Prasad SM, Dwivedi R, Zeeshan M (2005) Growth, photosynthetic electron transport, and antioxidant responses of young soybean seedlings to simultaneous exposure of nickel and UV-B stress. Photosynthetica 43(2):177–185 Rady MM (2011) Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Sci Hortic 129(2):232–237 Raven JA, Evans MC, Korb RE (1999) The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth Res 60(2–3):111–150 Reddy MP, Vora AB (1986) Changes in pigment composition, Hill reaction activity and saccharides metabolism in Bajra (Pennisetum typhoides S & H) leaves under NaCl salinity. Photosynthetica 20(1):50–55 Rhodes D, Nadolska-Orczyk A, Rich PJ (2002) Salinity, osmolytes and compatible solutes. Salinity: environment-plants-molecules. Springer, The Netherlands, pp 181–204 Sairam RK (1994) Effects of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture-stress conditions of two wheat varieties. Plant Growth Regul 14(2):173–181 Serna M, Hernández F, Coll F et al (2012) Brassinosteroid analogues effect on yield and quality parameters of field-grown lettuce (Lactuca sativa L.). Sci Hortic 143:29–37 Shahbaz M, Ashraf M (2008) Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.)? Plant Growth Regul 55(1):51–64 Sharma I, Ching E, Saini S et al (2013) Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiol Biochem 69:17–26 Sheoran IS, Singal HR, Singh R (1990) Effect of cadmium and nickel on photosynthesis and the enzymes of the photosynthetic carbon reduction cycle in pigeonpea (Cajanus cajan L.). Photosynth Res 23(3):345–351 Simões-Araújo JL, Rumjanek NG, Margis-Pinheiro M (2003) Small heat shock proteins genes are differentially expressed in distinct varieties of common bean. Braz J Plant Physiol 15(1):33–41 Singh I, Shono M (2005) Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth Regul 47(2–3):111–119 Singh PK, Tewari RK (2003) Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. J Environ Biol 24(1):107–112 Singh I, Kumar U, Singh SK et al (2012) Physiological and biochemical effect of 24-epibrassinoslide on cold tolerance in maize seedlings. Physiol Mol Biol Plants 18(3):229–236 Sofo A, Tuzio AC, Dichio B et al (2005) Influence of water deficit and rewatering on the components of the ascorbate–glutathione cycle in four interspecific Prunus hybrids. Plant Sci 169(2):403–412 Stobart AK, Griffiths WT, Ameen-Bukhari I et al (1985) The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Physiol Plant 63(3):293–298 Sültemeyer D, Schmidt C, Fock HP (1993) Carbonic anhydrases in higher plants and aquatic microorganisms. Physiol Plant 88(1):179–190 Swamy KN, Rao SSR (2009) Effect of 24-epibrassinolide on growth, photosynthesis, and essential oil content of Pelargonium graveolens (L.) Herit Russ. Plant Physiol 56(5):616–620 Swamy KN, Vardhini BV, Ramakrishna B et al (2014) Role of 28-homobrassinolide on growth biochemical parameters of Trigonella foneu-graecum L. plants subjected to lead toxicity. Int J Multidiscip Curr Res 2:317–321 Symons GM, Ross JJ, Jager CE et al (2008) Brassinosteroid transport. J Exp Bot 59(1):17–24 Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16:53–60 Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182 Tanaka K, Asami T, Yoshida S, Nakamura Y, Matsuo T, Okamoto S (2005) Brassinosteroid homeostasis in Arabidopsis is ensured by feedback expressions of multiple genes involved in its metabolism. Plant Physiol 138:1117–1125 Thornton LE, Peng H, Neff MM (2011) Rice CYP734A cytochrome P450s inactivate brassinosteroids in Arabidopsis. Planta 234:1151–1162 Thussagunpanit J, Jutamanee K, Kaveeta L (2015) Comparative effects of brassinosteroid and brassinosteroid mimic on improving photosynthesis, lipid peroxidation, and rice seed set under heat stress. J Plant Growth Regul 34(2):320–331 Tikkanen M, Aro EM (2014) Integrative regulatory network of plant thylakoid energy transduction. Trends Plant Sci 19:10–17 Uddling J, Gelang-Alfredsson J, Piikki K et al (2007) Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth Res 91(1):37–46 Vassilev A, Yordanov I (1997) Reductive analysis of factors limiting growth of cadmium-treated plants: a review. Bulg J Plant Physiol 23(3–4):114–133 Vert G, Chory J (2006) Downstream nuclear events in brassinosteroid signaling. Nature 441:96–100 Wang SG (1997) Influence of brassinosteroid on rice seedling growth. Int Rice Res Notes (Philippines) 22:20–21 Wang ZY, Bai MY, Oh E, Zhu JY (2012) Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet 46:701–724 Weast RC (1984) CRC handbook of chemistry and physics, 64th edn. CRC, Boca Raton Went FW, Thimann KV (1937) Phytohormones. Macmillan, New York, p 3 Wise RR, Naylor AW (1987) Chilling-enhanced photooxidation the peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure. Plant Physiol 83(2):272–277 Wolff SP, Garner A, Dean RT (1986) Free radicals, lipids and protein degradation. Trends Biochem Sci 11(1):27–31 Wu XX, He J, Zhu ZW et al (2014) Protection of photosynthesis and antioxidative system by 24-epibrassinolide in Solanum melongena under cold stress. Biol Plant 58(1):185–188 Xia XJ, Huang LF, Zhou YH et al (2009) Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta 230(6):1185–1196 Yang JY, Zheng W, Tian Y et al (2011) Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. Photosynthetica 49(2):275–284 Yin Y, Vafeados D, Tao Y et al (2005) A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell 120:249–259 Yu JQ, Huang LF, Hu WH et al (2004) A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot 55(399):1135–1143 Yu X, Li L, Zola J, Aluru M, Ye H, Foudree A, Guo H, Anderson S, Aluru S, Liu P, Rodermel S, Yin Y (2011) A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. Plant J 65:634–646 Yuan GF, Jia CG, Li Z et al (2010) Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Sci Hortic 126(2):103–108 Yuan L, Shu S, Sun J et al (2012) Effects of 24-epibrassinolide on the photosynthetic characteristics, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L. under Ca(NO3)2 stress. Photosynth Res 112:205–214 Yusuf M, Fariduddin Q, Hayat S et al (2011) Protective response of 28-homobrassinolide in cultivars of Triticum aestivum with different levels of nickel. Arch Environ Contam Toxicol 60(1):68–76 Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249(1):139–156 Zhang JH, Huang WD, Liu YP et al (2005) Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera l. cv. jingxiu) under cross-temperature stresses. J Integr Plant Biol 47(8):959–970 Zhang M, Zhai Z, Tian X et al (2008) Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.). Plant Growth Regul 56(3):257–264 Zhang MK, Liu ZY, Wang H (2010) Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Commun Soil Sci Plant Anal 41(7):820–831 Zhu JK (2001) Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4(5):401–406