Điều chỉnh sự phân hóa xương bởi các cytokine tiền viêm IL-1β và TNF-α: các kết luận hiện tại và tranh cãi

Springer Science and Business Media LLC - Tập 35 - Trang 957-971 - 2022
Qingyun Mo1, Wei Zhang1,2,3, Aijing Zhu1, Ludvig J. Backman4,5, Jialin Chen1,2,3
1School of Medicine, Southeast University, Nanjing, China
2Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, China
3China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
4Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
5Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden

Tóm tắt

Việc điều trị các bệnh gãy xương phức tạp vẫn là một vấn đề khó khăn cần giải quyết trong lĩnh vực chấn thương chỉnh hình. Trong kỹ thuật mô xương, việc sử dụng các tế bào gốc trung mô (MSCs) để sửa chữa mô mang lại hy vọng cho lĩnh vực y học về các bệnh xương. Các MSCs có khả năng phân hóa thành tế bào osteoblast và thúc đẩy quá trình tái tạo xương. Số lượng nghiên cứu ngày càng tăng cho thấy môi trường viêm ảnh hưởng đến sự phân hóa osteogenic của MSCs. Các TNF-α và IL-1β đóng vai trò khác nhau trong sự phân hóa osteogenic của MSCs thông qua các con đường tín hiệu khác nhau. Các yếu tố chính ảnh hưởng đến vai trò của TNF-α và IL-1β trong sự phân hóa osteogenic của MSCs bao gồm nồng độ và nguồn gốc của tế bào gốc (các loài khác nhau và các mô khác nhau). Tổng quan này phân tích sâu sắc vai trò của các cytokine tiền viêm trong sự phân hóa osteogenic của MSCs và tiết lộ một số tranh cãi hiện tại nhằm cung cấp một cái nhìn tổng quát.

Từ khóa

#cytokine tiền viêm #MSCs #phân hóa xương #TNF-α #IL-1β #môi trường viêm

Tài liệu tham khảo

Teti A. Bone development: overview of bone cells and signaling. Curr Osteoporos Rep [Internet]. 2011;9:264–73. Available from: http://link.springer.com/https://doi.org/10.1007/s11914-011-0078-8 Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3(Suppl 3):131–9. Redlich K, Smolen JS. Inflammatory bone loss: Pathogenesis and therapeutic intervention. Nat Rev Drug Discov [Internet]. Nature Publishing Group; 2012;11:234–50. Available from: http://dx.doi.org/https://doi.org/10.1038/nrd3669 Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of Osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res [Internet]. 2007;22:465–75. Available from: http://doi.wiley.com/https://doi.org/10.1359/jbmr.061113 Si L, Winzenberg TM, Jiang Q, Chen M, Palmer AJ. Projection of osteoporosis-related fractures and costs in China: 2010–2050. Osteoporos Int [Internet]. 2015;26:1929–37. Available from: http://link.springer.com/https://doi.org/10.1007/s00198-015-3093-2 Maisani M, Pezzoli D, Chassande O, Mantovani D. Cellularizing hydrogel-based scaffolds to repair bone tissue: How to create a physiologically relevant micro-environment? J Tissue Eng [Internet]. 2017;8:204173141771207. Available from: http://journals.sagepub.com/doi/https://doi.org/10.1177/2041731417712073 Roddy E, DeBaun MR, Daoud-Gray A, Yang YP, Gardner MJ. Treatment of critical-sized bone defects: clinical and tissue engineering perspectives [Internet]. Eur J Orthop Surg Traumatol 2018. p. 351–62. Available from: http://link.springer.com/https://doi.org/10.1007/s00590-017-2063-0 Goodman SB, Pajarinen J, Yao Z, Lin T. Inflammation and bone repair: from particle disease to tissue regeneration. Front Bioeng Biotechnol [Internet]. 2019;7:1–11. Available from: https://www.frontiersin.org/article/https://doi.org/10.3389/fbioe.2019.00230/full Maruyama M, Rhee C, Utsunomiya T, Zhang N, Ueno M, Yao Z, et al. Modulation of the inflammatory response and bone healing. Front Endocrinol (Lausanne) [Internet]. 2020;11:1–14. Available from: https://www.frontiersin.org/article/https://doi.org/10.3389/fendo.2020.00386/full Pajarinen J, Lin T, Gibon E, Kohno Y, Maruyama M, Nathan K, et al. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials [Internet]. Elsevier Ltd; 2019;196:80–9. Available from: https://doi.org/10.1016/j.biomaterials.2017.12.025 Loi F, Córdova LA, Pajarinen J, Lin T, Yao Z, Goodman SB. Inflammation, fracture and bone repair. Bone [Internet]. 2016;86:119–30. Available from: https://linkinghub.elsevier.com/retrieve/pii/S8756328216300540 Pajarinen J, Lin T, Gibon E, Kohno Y, Maruyama M, Nathan K, et al. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials [Internet]. 2019;196:80–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0142961217308347 Wang L, Wu F, Liu C, Song Y, Guo J, Yang Y, et al. Low-level laser irradiation modulates the proliferation and the osteogenic differentiation of bone marrow mesenchymal stem cells under healthy and inflammatory condition. Lasers Med Sci [Internet]. Lasers in Medical Science; 2019;34:169–78. Available from: http://link.springer.com/https://doi.org/10.1007/s10103-018-2673-8 Vallés G, Bensiamar F, Maestro-Paramio L, García-Rey E, Vilaboa N, Saldaña L. Influence of inflammatory conditions provided by macrophages on osteogenic ability of mesenchymal stem cells. Stem Cell Res Ther [Internet]. 2020;11:57. Available from: https://stemcellres.biomedcentral.com/articles/https://doi.org/10.1186/s13287-020-1578-1 Shi Y, Wang Y, Li Q, Liu K, Hou J, Shao C, et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol [Internet]. Springer US; 2018;14:493–507. Available from: http://dx.doi.org/https://doi.org/10.1038/s41581-018-0023-5 Macías I, Alcorta-Sevillano N, Infante A, Rodríguez CI. Cutting edge endogenous promoting and exogenous driven strategies for bone regeneration. Int J Mol Sci [Internet]. 2021;22:7724. Available from: https://www.mdpi.com/1422-0067/22/14/7724 de Gorter DJ, van Dinther M, Korchynskyi O, ten Dijke P. Biphasic effects of transforming growth factor β on bone morphogenetic protein-induced osteoblast differentiation. J Bone Miner Res [Internet]. 2011;26:1178–87. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/jbmr.313 Cui J, Zhang W, Huang E, Wang J, Liao J, Li R, et al. BMP9-induced osteoblastic differentiation requires functional Notch signaling in mesenchymal stem cells. Lab Investig [Internet]. 2019;99:58–71. Available from: http://www.nature.com/articles/s41374-018-0087-7 Abazari MF, Soleimanifar F, Amini Faskhodi M, Mansour RN, Amini Mahabadi J, Sadeghi S, et al. Improved osteogenic differentiation of human induced pluripotent stem cells cultured on polyvinylidene fluoride/collagen/platelet‐rich plasma composite nanofibers. J Cell Physiol [Internet]. 2020;235:1155–64. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/jcp.29029 Jang HY, Shin JY, Oh SH, Byun J-H, Lee JH. PCL/HA Hybrid microspheres for effective osteogenic differentiation and bone regeneration. ACS Biomater Sci Eng [Internet]. 2020;6:5172–80. Available from: https://pubs.acs.org/doi/https://doi.org/10.1021/acsbiomaterials.0c00550 Ji X, Yuan X, Ma L, Bi B, Zhu H, Lei Z, et al. Mesenchymal stem cell-loaded thermosensitive hydroxypropyl chitin hydrogel combined with a three-dimensional-printed poly(ε-caprolactone)/nano-hydroxyapatite scaffold to repair bone defects via osteogenesis, angiogenesis and immunomodulation. Theranostics [Internet]. 2020;10:725–40. Available from: http://www.thno.org/v10p0725.htm Lee J, Byun H, Madhurakkat Perikamana SK, Lee S, Shin H. Current Advances in immunomodulatory biomaterials for bone regeneration [Internet]. Adv. Healthc. Mater. 2019. p. 1801106. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/adhm.201801106 Falanga V. Wound healing issue. Dermatol Ther [Internet]. 2006;19:315–6. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1111/j.1529-8019.2006.00089.x Stein GS, Lian JB. Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr Rev [Internet]. 1993;14:424–42. Available from: https://academic.oup.com/edrv/article-lookup/doi/https://doi.org/10.1210/edrv-14-4-424 Long F. Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol [Internet]. Nature Publishing Group; 2012;13:27–38. Available from: http://www.nature.com/articles/nrm3254 Abbas S, Zhang Y-H, Clohisy JC, Abu-Amer Y. Tumor necrosis factor-α inhibits pre-osteoblast differentiation through its type-1 receptor. Cytokine [Internet]. 2003;22:33–41. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1043466603001066 Dong C, Yang H, Wang Y, Yan X, Li D, Cao Z, et al. Anagliptin stimulates osteoblastic cell differentiation and mineralization. Biomed Pharmacother [Internet]. Elsevier; 2020;129:109796. Available from: https://doi.org/10.1016/j.biopha.2019.109796 Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell [Internet]. 2002;108:17–29. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0092867401006225 Cheng S, Wang W, Lin Z, Zhou P, Zhang X, Zhang W, et al. Effects of extracellular calcium on viability and osteogenic differentiation of bone marrow stromal cells in vitro. Hum Cell [Internet]. 2013;26:114–20. Available from: http://link.springer.com/https://doi.org/10.1007/s13577-012-0041-8 Roberts SJ, Chen Y, Moesen M, Schrooten J, Luyten FP. Enhancement of osteogenic gene expression for the differentiation of human periosteal derived cells. Stem Cell Res [Internet]. Elsevier B.V.; 2011;7:137–44. Available from: http://dx.doi.org/https://doi.org/10.1016/j.scr.2011.04.003 An J, Yang H, Zhang Q, Liu C, Zhao J, Zhang L, et al. Natural products for treatment of osteoporosis: The effects and mechanisms on promoting osteoblast-mediated bone formation. Life Sci [Internet]. Elsevier Inc.; 2016;147:46–58. Available from: http://dx.doi.org/https://doi.org/10.1016/j.lfs.2016.01.024 Yang R, Yang X, Liu S, Ming L, Zhou Z, Liang Y, et al. Regulation of osteoblast differentiation by cytokine networks. Int J Mol Med [Internet]. Biophysical Society; 2021;22:1–10. Available from: https://doi.org/10.1016/j.bpj.2019.05.019 Robey PG. Cell sources for bone regeneration: The good, the bad, and the ugly (but promising). Tissue Eng Part B Rev [Internet]. 2011;17:423–30. Available from: https://www.liebertpub.com/doi/https://doi.org/10.1089/ten.teb.2011.0199 Ishikawa S, Iwasaki K, Komaki M, Ishikawa I. Role of ascorbic acid in periodontal ligament cell differentiation. J Periodontol [Internet]. 2004;75:709–16. Available from: http://doi.wiley.com/https://doi.org/10.1902/jop.2004.75.5.709 Ramazzotti G, Bavelloni A, Blalock W, Piazzi M, Cocco L, Faenza I. BMP-2 Induced expression of PLCβ1 that is a positive regulator of osteoblast differentiation. J Cell Physiol [Internet]. 2016;231:623–9. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/jcp.25107 Araki R, Asari T, Kudo H, Sasaki E, Yamauchi R, Liu X, et al. Effect of teriparatide on ligamentum flavum mesenchymal stem cells isolated from patients with ossification of the posterior longitudinal ligament. J Pharmacol Sci [Internet]. Elsevier Ltd; 2021;145:23–8. Available from: https://doi.org/10.1016/j.jphs.2020.10.003 Li L, Zhu YQ, Jiang L, Peng W, Ritchie HH. Hypoxia promotes mineralization of human dental pulp cells. J Endod [Internet]. Elsevier Ltd; 2011;37:799–802. Available from: http://dx.doi.org/https://doi.org/10.1016/j.joen.2011.02.028 Muire PJ, Mangum LH, Wenke JC. Time course of immune response and immunomodulation during normal and delayed healing of musculoskeletal wounds. Front Immunol [Internet]. 2020;11:1–24. Available from: https://www.frontiersin.org/article/https://doi.org/10.3389/fimmu.2020.01056/full Mountziaris PM, Mikos AG. Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Eng Part B Rev [Internet]. 2008;14:179–86. Available from: https://www.liebertpub.com/doi/https://doi.org/10.1089/ten.teb.2008.0038 Zhao Y, Tian Q, Frenkel S, Liu C. The promotion of bone healing by progranulin, a downstream molecule of BMP-2, through interacting with TNF/TNFR signaling. Biomaterials [Internet]. Elsevier Ltd; 2013;34:6412–21. Available from: http://dx.doi.org/https://doi.org/10.1016/j.biomaterials.2013.05.030 Qin Z, Fang Z, Zhao L, Chen J, Li Y, Liu G. High dose of TNF-α suppressed osteogenic differentiation of human dental pulp stem cells by activating the Wnt/β-catenin signaling. J Mol Histol [Internet]. Springer Netherlands; 2015;46:409–20. Available from: http://link.springer.com/https://doi.org/10.1007/s10735-015-9630-7 Yamazaki M, Fukushima H, Shin M, Katagiri T, Doi T, Takahashi T, et al. Tumor necrosis factor α represses bone morphogenetic protein (BMP) signaling by interfering with the DNA binding of smads through the activation of NF-κB. J Biol Chem [Internet]. 2009;284:35987–95. Available from: https://linkinghub.elsevier.com/retrieve/pii/S002192582037561X Chang J, Liu F, Lee M, Wu B, Ting K, Zara JN, et al. NF-κB inhibits osteogenic differentiation of mesenchymal stem cells by promoting β-catenin degradation. Proc Natl Acad Sci [Internet]. 2013;110:9469–74. Available from: http://www.pnas.org/lookup/doi/https://doi.org/10.1073/pnas.1300532110 Zhou FH, Foster BK, Zhou X-F, Cowin AJ, Xian CJ. TNF-α Mediates p38 MAP kinase activation and negatively regulates bone formation at the injured growth plate in rats. J Bone Miner Res [Internet]. 2006;21:1075–88. Available from: http://doi.wiley.com/https://doi.org/10.1359/jbmr.060410 Hess K, Ushmorov A, Fiedler J, Brenner RE, Wirth T. TNFα promotes osteogenic differentiation of human mesenchymal stem cells by triggering the NF-κB signaling pathway. Bone [Internet]. Elsevier Inc.; 2009;45:367–76. Available from: http://dx.doi.org/https://doi.org/10.1016/j.bone.2009.04.252 YANG Y, DAI M. Expression of PADI4 in patients with ankylosing spondylitis and its role in mediating the effects of TNF-α on the proliferation and osteogenic differentiation of human mesenchymal stem cells. Int J Mol Med [Internet]. 2015;36:565–70. Available from: https://www.spandidos-publications.com/https://doi.org/10.3892/ijmm.2015.2248 Lu Z, Wang G, Dunstan CR, Zreiqat H. Short-term exposure to tumor necrosis factor-alpha enables human osteoblasts to direct adipose tissue-derived mesenchymal stem cells into osteogenic differentiation. Stem Cells Dev [Internet]. 2012;21:2420–9. Available from: https://www.liebertpub.com/doi/https://doi.org/10.1089/scd.2011.0589 Garlanda C, Dinarello CA, Mantovani A. The interleukin-1 family: back to the future. Immunity [Internet]. Elsevier Inc.; 2013;39:1003–18. Available from: http://dx.doi.org/https://doi.org/10.1016/j.immuni.2013.11.010 Hu K, Jiang W, Sun H, Li Z, Rong G, Yin Z. Long noncoding RNA ZBED3-AS1 induces the differentiation of mesenchymal stem cells and enhances bone regeneration by repressing IL-1β via Wnt/β-catenin signaling pathway. J Cell Physiol. 2019;234:17863–75. Huang J, Chen L. IL-1β inhibits osteogenesis of human bone marrow-derived mesenchymal stem cells by activating FoxD3/microRNA-496 to repress wnt signaling. genesis [Internet]. 2017;55:e23040. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/dvg.23040 Zhang J, Li ZG, Si YM, Chen B, Meng J. The difference on the osteogenic differentiation between periodontal ligament stem cells and bone marrow mesenchymal stem cells under inflammatory microenviroments. Differentiation [Internet]. Elsevier; 2014;88:97–105. Available from: http://dx.doi.org/https://doi.org/10.1016/j.diff.2014.10.001 Ferreira E, Porter RM, Wehling N, O’Sullivan RP, Liu F, Boskey A, et al. Inflammatory cytokines induce a unique mineralizing phenotype in mesenchymal stem cells derived from human bone marrow. J Biol Chem [Internet]. 2013;288:29494–505. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021925820487691 Ding J, Ghali O, Lencel P, Broux O, Chauveau C, Devedjian JC, et al. TNF-α and IL-1β inhibit RUNX2 and collagen expression but increase alkaline phosphatase activity and mineralization in human mesenchymal stem cells. Life Sci [Internet]. Elsevier Inc.; 2009;84:499–504. Available from: http://dx.doi.org/https://doi.org/10.1016/j.lfs.2009.01.013 Hikiji H, Shin WS, Koizumi T, Takato T, Susami T, Koizumi Y, et al. Peroxynitrite production by TNF-α and IL-1β: implication for suppression of osteoblastic differentiation. Am J Physiol Metab [Internet]. 2000;278:E1031–7. Available from: https://www.physiology.org/doi/https://doi.org/10.1152/ajpendo.2000.278.6.E1031 Huang R-L, Yuan Y, Tu J, Zou G-M, Li Q. Opposing TNF-α/IL-1β- and BMP-2-activated MAPK signaling pathways converge on Runx2 to regulate BMP-2-induced osteoblastic differentiation. Cell Death Dis [Internet]. 2014;5:e1187. Available from: http://www.nature.com/articles/cddis2014101 Huang R-L, Yuan Y, Tu J, Zou G-M, Li Q. Exaggerated inflammatory environment decreases BMP-2/ACS-induced ectopic bone mass in a rat model: implications for clinical use of BMP-2. Osteoarthr Cartil [Internet]. 2014;22:1186–96. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1063458414011261 Wang N, Zhou Z, Wu T, Liu W, Yin P, Pan C, et al. TNF-α-induced NF-κB activation upregulates microRNA-150–3p and inhibits osteogenesis of mesenchymal stem cells by targeting β-catenin. Open Biol [Internet]. 2016;6:150258. Available from: https://royalsocietypublishing.org/doi/https://doi.org/10.1098/rsob.150258 Xu L, Zheng L, Wang Z, Li C, Li S, Xia X, et al. TNF-α-induced SOX5 upregulation is involved in the osteogenic differentiation of human bone marrow mesenchymal stem cells through KLF4 signal pathway. Mol Cells. 2018;41:575–81. Amarasekara DS, Kim S, Rho J. Regulation of osteoblast differentiation by cytokine networks. Int J Mol Sci [Internet]. 2021;22:2851. Available from: https://www.mdpi.com/1422-0067/22/6/2851 Park J-H, Kang Y-H, Hwang S-C, Oh SH, Byun J-H. Parthenolide has negative effects on in vitro enhanced osteogenic phenotypes by inflammatory cytokine TNF-α via inhibiting JNK signaling. Int J Mol Sci [Internet]. 2020;21:5433. Available from: https://www.mdpi.com/1422-0067/21/15/5433 Croes M, Oner FC, Kruyt MC, Blokhuis TJ, Bastian O, Dhert WJA, et al. Proinflammatory mediators enhance the osteogenesis of human mesenchymal stem cells after lineage commitment. Choi S, (Ed). PLoS One [Internet]. 2015;10:e0132781. Available from: https://dx.plos.org/https://doi.org/10.1371/journal.pone.0132781 Zhou M, Li Z, Wang Z. S100A4 upregulation suppresses tissue ossification and enhances matrix degradation in experimental periodontitis models. Acta Pharmacol Sin [Internet]. Nature Publishing Group; 2015;36:1388–94. Available from: http://www.nature.com/articles/aps201577 Sonomoto K, Yamaoka K, Oshita K, Fukuyo S, Zhang X, Nakano K, et al. Interleukin-1β induces differentiation of human mesenchymal stem cells into osteoblasts via the wnt-5a/receptor tyrosine kinase-like orphan receptor 2 pathway. Arthritis Rheum. 2012;64:3355–63. Wang H, Ni Z, Yang J, Li M, Liu L, Pan X, et al. IL‑1β promotes osteogenic differentiation of mouse bone marrow mesenchymal stem cells via the BMP/Smad pathway within a certain concentration range. Exp Ther Med [Internet]. 2020;3001–8. Available from: http://www.spandidos-publications.com/https://doi.org/10.3892/etm.2020.9065 Loebel C, Czekanska EM, Staudacher J, Salzmann G, Richards RG, Alini M, et al. The calcification potential of human MSCs can be enhanced by interleukin-1β in osteogenic medium. J Tissue Eng Regen Med. 2017;11:564–71. Sun C, Liu F, Cen S, Chen L, Wang Y, Sun H, et al. Tensile strength suppresses the osteogenesis of periodontal ligament cells in inflammatory microenvironments. Mol Med Rep [Internet]. 2017;16:666–72. Available from: https://www.spandidos-publications.com/https://doi.org/10.3892/mmr.2017.6644 Sang C, Zhang Y, Chen F, Huang P, Qi J, Wang P, et al. 13 Tumor necrosis factor alpha suppresses osteogenic differentiation of MSCs by inhibiting semaphorin 3B via Wnt/β-catenin signaling in estrogen-deficiency induced osteoporosis. Bone [Internet]. Elsevier Inc.; 2016;84:78–87. Available from: http://dx.doi.org/https://doi.org/10.1016/j.bone.2015.12.012 Xu F-F, Zhu H, Li X-M, Yang F, Chen J-D, Tang B, et al. Intercellular adhesion molecule-1 inhibits osteogenic differentiation of mesenchymal stem cells and impairs bio-scaffold-mediated bone regeneration in vivo. Tissue Eng Part A [Internet]. 2014;20:2768–82. Available from: https://www.liebertpub.com/doi/https://doi.org/10.1089/ten.tea.2014.0007 Briolay A, Lencel P, Bessueille L, Caverzasio J, Buchet R, Magne D. Autocrine stimulation of osteoblast activity by Wnt5a in response to TNF-α in human mesenchymal stem cells. Biochem Biophys Res Commun [Internet]. Elsevier Inc.; 2013;430:1072–7. Available from: http://dx.doi.org/https://doi.org/10.1016/j.bbrc.2012.12.036 Osta B, Lavocat F, Eljaafari A, Miossec P. Effects of interleukin-17A on osteogenic differentiation of isolated human mesenchymal stem cells. Front Immunol [Internet]. 2014;5:1–8. Available from: http://journal.frontiersin.org/article/https://doi.org/10.3389/fimmu.2014.00425/abstract Deng L, Hu G, Jin L, Wang C, Niu H. Involvement of microRNA-23b in TNF-α-reduced BMSC osteogenic differentiation via targeting runx2. J Bone Miner Metab [Internet]. Springer Japan; 2018;36:648–60. Available from: https://doi.org/10.1007/s00774-017-0886-8 Hao Y, Wu M, Wang J. Fibroblast growth factor-2 ameliorates tumor necrosis factor-alpha-induced osteogenic damage of human bone mesenchymal stem cells by improving oxidative phosphorylation. Mol Cell Probes [Internet]. Elsevier; 2020;52:101538. Available from: https://doi.org/10.1016/j.mcp.2020.101538 Liu W, Konermann A, Guo T, Jäger A, Zhang L, Jin Y. Canonical Wnt signaling differently modulates osteogenic differentiation of mesenchymal stem cells derived from bone marrow and from periodontal ligament under inflammatory conditions. Biochim Biophys Acta - Gen Subj [Internet]. Elsevier B.V.; 2014;1840:1125–34. Available from: http://dx.doi.org/https://doi.org/10.1016/j.bbagen.2013.11.003 Zhang W, Jia L, Zhao B, Xiong Y, Wang Y-N, Liang J, et al. Quercetin reverses TNF‑α induced osteogenic damage to human periodontal ligament stem cells by suppressing the NF‑κB/NLRP3 inflammasome pathway. Int J Mol Med [Internet]. 2021;47:39. Available from: http://www.spandidos-publications.com/https://doi.org/10.3892/ijmm.2021.4872 Zhao B, Zhang W, Xiong Y, Zhang Y, Jia L, Xu X. Rutin protects human periodontal ligament stem cells from TNF-α induced damage to osteogenic differentiation through suppressing mTOR signaling pathway in inflammatory environment. Arch Oral Biol [Internet]. Elsevier; 2020;109:104584. Available from: https://doi.org/10.1016/j.archoralbio.2019.104584 Zhou Z, Liu F, Wang L, Zhu B, Chen Y, Yu Y, et al. Inflammation has synergistic effect with nicotine in periodontitis by up‐regulating the expression of α7 nAChR via phosphorylated GSK‐3β. J Cell Mol Med [Internet]. 2020;24:2663–76. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1111/jcmm.14986 Meng T, Zhou Y, Li J, Hu M, Li X, Wang P, et al. Azithromycin promotes the osteogenic differentiation of human periodontal ligament stem cells after stimulation with TNF- α. Stem Cells Int [Internet]. 2018;2018:1–11. Available from: https://www.hindawi.com/journals/sci/2018/7961962/ Dong T, Sun X, Jin H. Role of YAP1 gene in proliferation, osteogenic differentiation, and apoptosis of human periodontal ligament stem cells induced by TNF‐α. J Periodontol [Internet]. 2021;92:1192–200. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/JPER.20-0176 Mao C, Wang Y, Zhang X, Zheng X, Tang T, Lu E. Double-edged-sword effect of IL-1β on the osteogenesis of periodontal ligament stem cells via crosstalk between the NF-κB, MAPK and BMP/Smad signaling pathways. Cell Death Dis [Internet]. 2016;7:e2296–e2296. Available from: http://www.nature.com/articles/cddis2016204 Lacey DC, Simmons PJ, Graves SE, Hamilton JA. Proinflammatory cytokines inhibit osteogenic differentiation from stem cells: implications for bone repair during inflammation. Osteoarthr Cartil [Internet]. Elsevier Ltd; 2009;17:735–42. Available from: http://dx.doi.org/https://doi.org/10.1016/j.joca.2008.11.011 Wang Y, Xu D, Liu Y, Zhang R, Lu L. The effect of tumor necrosis factor-α at different concentrations on osteogenetic differentiation of bone marrow mesenchymal stem cells. J Craniofac Surg [Internet]. 2015;26:2081–5. Available from: https://journals.lww.com/00001665-201510000-00011 Sullivan CB, Porter RM, Evans CH, Ritter T, Shaw G, Barry F, et al. TNFα and IL-1β influence the differentiation and migration of murine MSCs independently of the NF-κB pathway. Stem Cell Res Ther [Internet]. 2014;5:104. Available from: https://stemcellres.biomedcentral.com/articles/https://doi.org/10.1186/scrt492 Daniele S, Natali L, Giacomelli C, Campiglia P, Novellino E, Martini C, et al. Osteogenesis is improved by low tumor necrosis factor alpha concentration through the modulation of Gs-coupled receptor signals. Mol Cell Biol [Internet]. 2017;37:1–15. Available from: https://journals.asm.org/doi/https://doi.org/10.1128/MCB.00442-16 Majidinia M, Sadeghpour A, Yousefi B. The roles of signaling pathways in bone repair and regeneration. J Cell Physiol [Internet]. 2018;233:2937–48. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/jcp.26042 Glass GE, Chan JK, Freidin A, Feldmann M, Horwood NJ, Nanchahal J. TNF-αpromotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. Proc Natl Acad Sci [Internet]. 2011;108:1585–90. Available from: http://www.pnas.org/cgi/doi/https://doi.org/10.1073/pnas.1018501108 Voss JO, Loebel C, Bara JJ, Fussinger MA, Duttenhoefer F, Alini M, et al. Effect of short-term stimulation with interleukin-1 β and differentiation medium on human mesenchymal stromal cell paracrine activity in coculture with osteoblasts. Biomed Res Int [Internet]. 2015;2015:1–16. Available from: https://www.hindawi.com/journals/bmri/2015/714230/ Yang N, Li Y, Wang G, Ding Y, Jin Y, Xu Y. Tumor necrosis factor-α suppresses adipogenic and osteogenic differentiation of human periodontal ligament stem cell by inhibiting miR-21/Spry1 functional axis. Differentiation [Internet]. Elsevier B.V.; 2017;97:33–43. Available from: https://doi.org/10.1016/j.diff.2017.08.004 Albuquerque-Souza E, Schulte F, Chen T, Hardt M, Hasturk H, Van Dyke TE, et al. Maresin-1 and resolvin E1 promote regenerative properties of periodontal ligament stem cells under inflammatory conditions. Front Immunol [Internet]. 2020;11:1–15. Available from: https://www.frontiersin.org/article/https://doi.org/10.3389/fimmu.2020.585530/full Fang B, Wang D, Zheng J, Wei Q, Zhan D, Liu Y, et al. Involvement of tumor necrosis factor alpha in steroid-associated osteonecrosis of the femoral head: friend or foe? Stem Cell Res Ther [Internet] 2019;10:5. Available from: https://stemcellres.biomedcentral.com/articles/https://doi.org/10.1186/s13287-018-1112-x Xin W, Wang X, Zhang W, Zhu H, Dong R, Zhang J. Tumor necrosis factor-α inhibits bone marrow stem cell differentiation into osteoblasts by downregulating microRNA-34a expression. Ann Clin Lab Sci [Internet]. 2019;49:324–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31308031 Cao X, Lin W, Liang C, Zhang D, Yang F, Zhang Y, et al. Naringin rescued the TNF-α-induced inhibition of osteogenesis of bone marrow-derived mesenchymal stem cells by depressing the activation of NF-кB signaling pathway. Immunol Res. Springer US; 2015;62:357–67. Lackington WA, Gomez-Sierra MA, González-Vázquez A, O’Brien FJ, Stoddart MJ, Thompson K. Non-viral gene delivery of interleukin-1 receptor antagonist using collagen-hydroxyapatite scaffold protects rat BM-MSCs from IL-1β-mediated inhibition of osteogenesis. Front Bioeng Biotechnol [Internet]. 2020;8:1–13. Available from: https://www.frontiersin.org/article/https://doi.org/10.3389/fbioe.2020.582012/full Xia H, Li X, Gao W, Fu X, Fang RH, Zhang L, et al. Tissue repair and regeneration with endogenous stem cells. Nat Rev Mater [Internet]. Springer US; 2018;3:174–93. Available from: http://dx.doi.org/https://doi.org/10.1038/s41578-018-0027-6 Ren G, Su J, Zhang L, Zhao X, Ling W, L’huillie A, et al. Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells [Internet]. 2009;27:1954–62. Available from: https://academic.oup.com/stmcls/article/27/8/1954-1962/6402324 Shi Y, Hu G, Su J, Li W, Chen Q, Shou P, et al. Mesenchymal stem cells: A new strategy for immunosuppression and tissue repair. Cell Res [Internet]. Nature Publishing Group; 2010;20:510–8. Available from: http://dx.doi.org/https://doi.org/10.1038/cr.2010.44 Nguyen LK, Cavadas MAS, Kholodenko BN, Frank TD, Cheong A. Species differential regulation of COX2 can be described by an NFκB-dependent logic AND gate. Cell Mol Life Sci [Internet]. 2015;72:2431–43. Available from: http://link.springer.com/https://doi.org/10.1007/s00018-015-1850-1 Ray TD, Mekasha S, Liang Y, Lu B, Ram S, Ingalls RR. Species-specific differences in regulation of macrophage inflammation by the C3a–C3a receptor axis. Innate Immun [Internet]. 2018;24:66–78. Available from: http://journals.sagepub.com/doi/https://doi.org/10.1177/1753425917747044 Zhang Y, Xing Y, Jia L, Ji Y, Zhao B, Wen Y, et al. An in vitro comparative study of multisource derived human mesenchymal stem cells for bone tissue engineering. Stem Cells Dev [Internet]. 2018;27:1634–45. Available from: https://www.liebertpub.com/doi/https://doi.org/10.1089/scd.2018.0119 Jin H, Bae Y, Kim M, Kwon S-J, Jeon H, Choi S, et al. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int J Mol Sci [Internet]. 2013;14:17986–8001. Available from: http://www.mdpi.com/1422-0067/14/9/17986 Zhang Q, Li Q, Zhu J, Guo H, Zhai Q, Li B, et al. Comparison of therapeutic effects of different mesenchymal stem cells on rheumatoid arthritis in mice. PeerJ [Internet]. 2019;7:e7023. Available from: https://peerj.com/articles/7023 Marupanthorn K, Tantrawatpan C, Tantikanlayaporn D, Kheolamai P, Manochantr S. The effects of TNF-α on osteogenic differentiation of umbilical cord derived mesenchymal stem cells. J Med Assoc Thai [Internet]. 2015;98 Suppl 3:S34–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26387386 Yang C, Chen Y, Li F, You M, Zhong L, Li W, et al. The biological changes of umbilical cord mesenchymal stem cells in inflammatory environment induced by different cytokines. Mol Cell Biochem [Internet]. Springer US; 2018;446:171–84. Available from: http://dx.doi.org/https://doi.org/10.1007/s11010-018-3284-1 Cho HH, Shin KK, Kim YJ, Song JS, Kim JM, Bae YC, et al. NF-ÎoB activation stimulates osteogenic differentiation of mesenchymal stem cells derived from human adipose tissue by increasing TAZ expression. J Cell Physiol [Internet]. 2009;223:n/a-n/a. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/jcp.22024 Chen J, Yu M, Li X, Sun Q, Yang C, Yang P. Progranulin promotes osteogenic differentiation of human periodontal ligament stem cells via tumor necrosis factor receptors to inhibit TNF‐α sensitized NF‐kB and activate ERK/JNK signaling. J Periodontal Res [Internet]. 2020;55:363–73. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1111/jre.12720 Yang J, Cao Y, Lv Z, Jiang T, Wang L, Li Z. Cordycepin protected against the TNF-α-induced inhibition of osteogenic differentiation of human adipose-derived mesenchymal stem cells. Int J Immunopathol Pharmacol [Internet]. 2015;28:296–307. Available from: http://journals.sagepub.com/doi/https://doi.org/10.1177/0394632015592160 Hutton DL, Kondragunta R, Moore EM, Hung BP, Jia X, Grayson WL. Tumor necrosis factor improves vascularization in osteogenic grafts engineered with human adipose-derived stem/stromal cells. Almarza A, (Ed). PLoS One [Internet]. 2014;9:e107199. Available from: https://dx.plos.org/https://doi.org/10.1371/journal.pone.0107199 Karnes JM, Daffner SD, Watkins CM. Multiple roles of tumor necrosis factor-alpha in fracture healing. Bone [Internet]. Elsevier Inc.; 2015;78:87–93. Available from: http://dx.doi.org/https://doi.org/10.1016/j.bone.2015.05.001 Gerstenfeld L, Cho T-J, Kon T, Aizawa T, Tsay A, Fitch J, et al. Impaired fracture healing in the absence of TNF-α signaling: The role of TNF-α in endochondral cartilage resorption. J Bone Miner Res [Internet]. 2003;18:1584–92. Available from: http://doi.wiley.com/https://doi.org/10.1359/jbmr.2003.18.9.1584 Glass GE, Chan JK, Freidin A, Feldmann M, Horwood NJ, Nanchahal J. TNF-α promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. Proc Natl Acad Sci [Internet]. 2011;108:1585–90. Available from: http://www.pnas.org/cgi/doi/https://doi.org/10.1073/pnas.1018501108 Liu H, Li D, Zhang Y, Li M. Inflammation, mesenchymal stem cells and bone regeneration. Histochem Cell Biol [Internet]. Springer Berlin Heidelberg; 2018;149:393–404. Available from: http://dx.doi.org/https://doi.org/10.1007/s00418-018-1643-3 Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, et al. Dickkopf-1 is a master regulator of joint remodeling. Nat Med [Internet]. 2007;13:156–63. Available from: http://www.nature.com/articles/nm1538 Timmen M, Hidding H, Wieskötter B, Baum W, Pap T, Raschke MJ, et al. Influence of antiTNF-alpha antibody treatment on fracture healing under chronic inflammation. BMC Musculoskelet Disord [Internet]. 2014;15:184. Available from: https://bmcmusculoskeletdisord.biomedcentral.com/articles/https://doi.org/10.1186/1471-2474-15-184 Chao T-H, Yu H-N, Huang C-C, Liu W-S, Tsai Y-W, Wu W-T. Association of interleukin-1 beta (-511C/T) polymorphisms with osteoporosis in postmenopausal women. Ann Saudi Med [Internet]. 2010;30:437–41. Available from: http://www.annsaudimed.net/doi/https://doi.org/10.4103/0256-4947.71062 Al-Daghri NM, Aziz I, Yakout S, Aljohani NJ, Al-Saleh Y, Amer OE, et al. Inflammation as a contributing factor among postmenopausal Saudi women with osteoporosis. Medicine (Baltimore) [Internet]. 2017;96:e5780. Available from: https://journals.lww.com/00005792-201701270-00015 Zha L, He L, Liang Y, Qin H, Yu B, Chang L, et al. TNF-α contributes to postmenopausal osteoporosis by synergistically promoting RANKL-induced osteoclast formation. Biomed Pharmacother [Internet]. 2018;102:369–74. Available from: https://linkinghub.elsevier.com/retrieve/pii/S075333221736537X Liao L, Su X, Yang X, Hu C, Li B, Lv Y, et al. TNF-α inhibits FoxO1 by upregulating miR-705 to aggravate oxidative damage in bone marrow-derived mesenchymal stem cells during osteoporosis. Stem Cells [Internet]. 2016;34:1054–67. Available from: https://academic.oup.com/stmcls/article/34/4/1054-1067/6407651 Sang C, Zhang Y, Chen F, Huang P, Qi J, Wang P, et al. Tumor necrosis factor alpha suppresses osteogenic differentiation of MSCs by inhibiting semaphorin 3B via Wnt/β-catenin signaling in estrogen-deficiency induced osteoporosis. Bone [Internet]. Elsevier Inc.; 2016;84:78–87. Available from: http://dx.doi.org/https://doi.org/10.1016/j.bone.2015.12.012 Kimble RB, Vannice JL, Bloedow DC, Thompson RC, Hopfer W, Kung VT, et al. Interleukin-1 receptor antagonist decreases bone loss and bone resorption in ovariectomized rats. J Clin Invest [Internet]. 1994;93:1959–67. Available from: http://www.jci.org/articles/view/117187 E Rutledge K, Cheng Q. Modulation of inflammatory response and induction of bone formation based on combinatorial effects of resveratrol. J Nanomed Nanotechnol [Internet]. 2016;07:1–10. Available from: https://www.omicsonline.org/open-access/modulation-of-inflammatory-response-and-induction-of-bone-formationbased-on-combinatorial-effects-of-resveratrol-2157-7439-1000350.php?aid=66903 Li L, Yu M, Li Y, Li Q, Yang H, Zheng M, et al. Synergistic anti-inflammatory and osteogenic n-HA/resveratrol/chitosan composite microspheres for osteoporotic bone regeneration. Bioact Mater [Internet]. 2021;6:1255–66. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2452199X2030270X