Regulation of Thermotolerance by Stress-Induced Transcription Factors in Saccharomyces cerevisiae

American Society for Microbiology - Tập 7 Số 5 - Trang 783-790 - 2008
Noritaka Yamamoto1,1, Yuka Maeda1,1, Aya Ikeda1,1, Hiroshi Sakurai1,1
1Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa, 920-0942, Japan

Tóm tắt

ABSTRACT The heat shock transcription factor Hsf1 and the general stress transcription factors Msn2 and Msn4 (Msn2/4) are major regulators of the heat shock response in Saccharomyces cerevisiae . Here, we show that transcriptional activation of their target genes, including HSP104 , an antistress chaperone gene, is obligatory for thermotolerance. Although Hsf1 activity might be necessary before the exposure of cells to high temperature, severe heat shock induced the binding of hyperphosphorylated Hsf1 to its target promoters. However, promoter-bound, phosphorylated Hsf1 was inactive for transcription because RNA polymerase II was inactive at high temperatures. Rather, our results suggest that Hsf1 activates the transcription of most of its target genes during the recovery period following severe heat shock. This delayed upregulation by Hsf1, which would be induced by misfolded proteins that accumulate in severely heat-shocked cells, is required for the resumption of normal cell growth. In contrast, the factors Msn2/4 were not involved in the delayed upregulation of genes and were dispensable for cell growth during the recovery period, suggesting that they play a role before the exposure to high temperature. These results show that Hsf1 and Msn2/4 act differentially before and after exposure to extreme temperatures to ensure cell survival and growth.

Từ khóa


Tài liệu tham khảo

10.1046/j.1365-2958.2001.02339.x

10.1038/45287

10.1046/j.1365-2958.1999.01467.x

10.1111/j.1574-6976.2005.00001.x

10.1091/mbc.12.2.323

10.1128/MCB.01158-06

10.1074/jbc.M602454200

10.1111/j.1574-6976.2000.tb00551.x

10.1091/mbc.11.12.4241

10.1074/jbc.M201756200

10.1128/MCB.15.5.2737

10.1038/nature02263

10.1101/gad.12.4.586

10.1046/j.1365-2958.2002.02860.x

10.1074/jbc.M311005200

10.1111/j.1365-2958.2006.05097.x

10.1128/MCB.24.12.5249-5256.2004

10.1128/MCB.24.9.3648-3659.2004

10.1074/jbc.M609708200

10.1074/jbc.M510827200

10.1091/mbc.e02-05-0247

10.1101/gad.1490207

10.1101/gad.9.13.1559

10.1128/MCB.18.1.30

10.1073/pnas.93.11.5301

10.1101/gad.10.5.592

10.1002/j.1460-2075.1996.tb00576.x

10.1002/j.1460-2075.1992.tb05323.x

10.1074/jbc.273.16.9912

10.1093/jb/mvg003

10.1146/annurev.ge.27.120193.002253

10.1016/S0955-0674(00)00219-2

10.1111/j.1574-6976.1993.tb00005.x

10.1074/jbc.M611801200

10.1126/science.2188365

10.1128/jb.175.20.6484-6491.1993

10.1073/pnas.93.12.5777

10.1083/jcb.134.6.1375

10.1128/EC.4.12.2008-2016.2005

10.1111/j.1365-2958.2003.03959.x

10.1016/S0167-7799(98)01251-7

10.1073/pnas.88.24.11091

10.1016/S0092-8674(88)91219-6

Takemori, Y., A. Sakaguchi, S. Matsuda, Y. Mizukami, and H. Sakurai. 2005. Stress-induced transcription of the endoplasmic reticulum oxidoreductin gene ERO1 in the yeast Saccharomyces cerevisiae. Mol. Genet. Genomics275:89-96.

10.1074/jbc.273.41.26875

Trott, A., and K. A. Morano. 2003. The yeast response to heat shock, p. 71-119. In S. Hohmann and P. W. H. Mager (ed.), Yeast stress responses. Springer-Verlag, Heidelberg, Germany.

10.1074/jbc.M204686200

10.1074/jbc.R500010200

10.1016/j.bbrc.2006.06.057

10.1128/EC.00098-07

10.1074/jbc.M411256200

10.1038/nrm1492