Regulation of Sirtuin-3 and ERK1/2/p38MAPK by the combination Ga nanoparticles/γ-radiation low dosage: an effective approach for treatment of hepatocellular carcinoma

Mohga S. Abdalla1, El-Sayed M. El-Mahdy1, Somaya Z. Mansour2, Sawsan M. Elsonbaty3, Menna H. Amin1
1Department of Chemistry, Faculty of Science, Helwan University, Helwan, Egypt
2Department of Radiobiology, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Egypt
3Department of Radiation Microbiology, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Egypt

Tóm tắt

Synthesized gallium nanoparticles synthesized by grape seed extract were characterized with spherical shape and size range less than100 nm, possessing the functional groups of the biological material. The purpose of this study is to evaluate gallium nanoparticles synthesized by grape seed extract, as an antitumor agent with low dose of γ-radiation against hepatocellular carcinoma in rats. This work aimed to evaluate the antitumor effect of gallium nanoparticles synthesized (GaNPs) by grape seed extract and the co-binded treatment with low dose of γ-radiation on hepatocellular carcinoma in rats, through evaluating their effect on signaling pathways and tumor markers. Cytotoxic activity of GaNPs synthesized by grape seed extract was estimated by mediated cytotoxicity assay on HepG2 cell line that recorded IC50 of 388.8 μg/ml. To achieve these goals, eighty Wistar male rats (120−150 g) will be divided into eight groups, each of 10 rats. The animals are administered with diethylnitrosamine to induce hepatocellular carcinoma and then orally administered with GaNPs synthesized by grape seed extract (38.5 mg/kg) in combination with the exposure of the total body to a low dose of γ-radiation (0.5 Gy). The treatment modulated plasma vascular endothelial growth factor and alpha-fetoprotein. In addition, the immunoblotting results of nuclear factor-kappa beta showed a marked downregulation of extracellular signal-regulated kinase, mitogen-activated protein kinase, and c-Jun NH2-terminal kinase alongside, significantly elevating the level of Sirtuin-3 and caspase-3. It can be concluded that the combined treatment with GaNPs synthesized by grape seed extract and low dose γ-radiation may have antineoplastic activity against hepatocarcinogenesis by inhibiting signal pathways extracellular signal-regulated kinase/mitogen-activated protein kinase/c-Jun NH2-terminal kinase and stimulating apoptotic protein.

Tài liệu tham khảo

Torre LA, Bray F, Siegel RL et al (2012) Global cancer statistics. CA Cancer J Clin 65:87–108 Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, Plummer M (2012) Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol 13:607–615 Mittal S, El-Serag HB (2013) Epidemiology of HCC: consider the population. J Clin Gastroenterol 47:S2–S6 Park D-H et al (2009) Diethylnitrosamine (DEN) induces irreversible hepatocellular carcinogenesis through overexpression of G 1/S-phase regulatory proteins in rat. Toxicol Lett 191:321–326 Kulkarni S, Pandey A, Mutalik S (2020) Liquid metal based theranosticnanoplatforms: application in cancer therapy, imaging and biosensing. Nanomedicine: NBM 26:102175 Mikuš P, Melník M, Forgácsová A, Krajčiová D, Havránek E (2014) Gallium compounds in nuclear medicine and oncology. Main Gr Met Chem 37:53–65 Chakraborty A, Boer JC, Selomulya C, Plebanski M (2017) Amino acid functionalized inorganic nanoparticles as cutting-edge therapeutic and diagnostic agents. Bioconjug Chem 29:657–671 Rababah TM, Hettiarachchy NS, Horax R (2016) Total phenolics and antioxidant activities of fenugreek, green tea, grape seed, ginger, rosmary, gotu kola, and ginkgo extracts, vitamin E and tert-butylhydroquinone. J Agri Food Chem 52:5183–5186 Nassiri-Asl M, Hosseinzadeh H (2009) Review of the pharmacological effects of Vitisvinifera (grape) and its bioactive compounds. Phytother Res 23:1197–1204 Liu W et al (2016) Grape seed proanthocyanidin extract protects against perfluorooctanoic acid-induced hepatotoxicity by attenuating inflammatory response, oxidative stress and apoptosis in mice. Toxicol Res 5:224–234 Raina K, Singh RP, Agarwal R, Agarwal C (2007) Oral grape seed extract inhibits prostate tumor growth and progression in TRAMP mice. Cancer Res 67:5976–5982 Meeran SM, Vaid M, Punathil T, Katiyar SK (2009) Dietary grape seed proanthocyanidins inhibit 12-O-tetradecanoyl phorbol-13-acetate-caused skin tumor promotion in 7,12-dimethylbenz(a) anthracene-initiated mouse skin, which is associated with the inhibition of inflammatory responses. Carcinogenesis 30:520–528 Hamza AH, Abdulfattah HM, Mahmoud RH, Khalil WK, Ahmed HH (2015) Current concepts in pathophysiology and management of hepatocellular carcinoma. Acta Biochimica Polonica 62:573–580 Sherif AA, Abdelhalim SZ, Salim EI (2017) Immunohistochemical and biochemical alterations following administration of proanthocyanidin extract in rat’s hepatocellular carcinoma. Biomed. Pharmacother 39:1310–1319 Porcel E, Liehn S, Remita H et al (2010) Platinum nanoparticles: a promising material for future cancer therapy. Nanotechnology 21:85103 Danhier F, Feron O, Preat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146 Kandil EI, El-Sonbaty SM, Moawed FS, Khedr OM (2018) Anticancer redox activity of gallium nanoparticles accompanied with low dose of gamma radiation in female mice. Tumor Biol:1–14 Feinendegen LF (2005) Evidence for beneficial low level radiation effects and radiation hormesis. Br J Radiol 78:3–7 Feinendegen L, Hahnfeldt P, Schadt EE, Stumpf M, Voit EO (2008) Systems biology and its potential role in radiobiology. Radiat Environ Biophys 47:5–23 National Research Council (US) Institute for Laboratory Animal Research (1996) Guide for the Care and Use of Laboratory Animals. National Academies Press (US), Washington (DC) Mohseni MS, Khalilzadeh MA, Mohseni M, Hargalani FZ, Getso MI, Raissi V, Raiesi O (2020) Green synthesis of Ag nanoparticles from pomegranate seeds extract and synthesis of Ag-Starch nanocompo-site and characterization of mechanical properties of the films. Biocatal Agri Biotechnol 25:101569 Vichai V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 3:1112–1116 Kamiloglu S, Sari G, Ozdal T, Capanoglu E (2020) Guidelines for cell viability assays. Food Frontiers 1:332–349 Ahmed Alamoudi W, Ahmad F, Acharya S, Haque S, Alsamman K, Herzallah HK, Al-Otaibi ST (2018) A simplified colorimetric method for rapid detection of cell viability and toxicity in adherent cell culture systems. J BUON 23(5):1505–1513 Akhila JS, Deepa S, Alwar MC (2007) Acute toxicity studies and determination of median lethal dose. Curr Sci 93:917–920 Banchroft JD, Stevens A, Turner DR (1996) Theory and practice of histological techniques, 4th edn. Churchil Livingstone, London, p 125 Einhorn L (2003) Gallium nitrate in the treatment of bladder cancer. Semin Oncol 30(2 Suppl. 5):34–41 Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007 Silpa S (2016) Nanotechnology-present revolutionary biotechnology. Int J Pharma Res Health Sci 4:1261–1267 Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306 Nguyen KT (2011) Targeted nanoparticles for cancer therapy: promises and challenges. Nguyen J Nanomed Nanotechnol 2:5 Moawed FSM, El-Sonbaty SM, Mansour SZ (2019) Gallium nanoparticles along withlow-dose gamma radiation modulateTGF-b/MMP-9 expression inhepatocellular carcinogenesis in rats. Tumor Biol:1–9 Chandramohan S, Sundar K, Muthukumaran A (2019) Reducing agents influence the shapes of selenium nanoparticles (SeNPs) and subsequently their antibacterial and antioxidant activity. Mater Res Express 6:0850i2 Shaarawy SM, Tohamy AA, Elgendy SM, Elmageed ZY, Bahnasy A, Mohamed MS, Kandil E, Matrougui K (2009) Protective effects of garlic and silymarin on NDEA-induced rats hepatotoxicity. Int J Biol Sci 5:549–557 Wang J, Yi Y, Li Y, Cai X, He H, Ni X, Zhou J, Cheng Y, Jin J, Fan J, Qiu S (2014) Down-regulation of sirtuin 3 is associated with poor prognosis in hepatocellular carcinoma after resection. BMC Cancer 14:297 Li S, Banck M, Mujtaba S, Zhou M-M, Sugrue MM et al (2010) p53-induced growth arrest is regulated by the mitochondrial Sirt-3 deacetylase. PLoS ONE 5(5):e10486 Vaupe P (2004) The role of hypoxia-induced factors in tumor progression. Oncologist 9(suppl 5):10–17 Zhang L, Wanga J, Tanga J, Konga X, Yanga J, Zhenga F, Guoa L, Huanga Y, Zhangd L, Tiand L, Caod S, Tuod C, Guod H, Chen S (2004) VEGF is essential for the growth and migration of human hepatocellular carcinoma cells. Mol Biol Rep 39(5):5085–5093 Campanero MR, Herrero A, Calvo V (2008) The histone deacetylase inhibitor trichostatin A induces GADD45 gamma expression via Oct and NF-Y binding sites. Oncogene 27:1263–1272 Schumacker PT (2011) SIRT-3 controls cancer metabolic reprogramming by regulating ROS and HIF. Cancer Cell 19:299–300 Finley LW, Carracedo A, Lee J, Souza A, Egia A, Zhang J, Teruya-Feldstein J, Moreira PI, Cardoso SM, Clish CB, Pandolfi PP, Haigis MC (2011) SIRT-3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell 19:416–428 Ansari A, Rahman MS, Kim K (2017) Function of the SIRT3 mitochondrial deacetylase in cellular physiology, cancer, and neurodegenerative disease. Aging cell 16:4–16 Zhang YY, Zhou LM (2012) Sirt-3 inhibits hepatocellular carcinoma cell growth through reducing Mdm2-mediated p53 degradation. Biochem Biophys Res Commun 423:26–31 Sanvisens N, Bano MC, Huang M, Puig S (2011) Regulation of ribonucleotide reductase in response to iron deficiency. Mol Cell 44(5):759–769 Nakamura T, Naguro I, Ichijo H (2019) Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochim Biophys Acta Gen Subj 1863(9):1398–1409 Manfait M, Collery P (1984) Etude in vitro par spectroscopie Raman de la conformation d’un ADN sous l’influence des ions magnesium et gallium. Magnes-Bull 4:153–155 Chitambar CR, Purpi DP, Woodliff J et al (2007) Development of gallium compounds for treatment of lymphoma: gallium maltolate, a novel hydroxypyrone gallium compoundinduces apoptosis and circumvents lymphoma cell resistance to gallium nitrate. J Pharmacol Exp Ther 322:1228–1236 Hassani A, Azarian MMS, Ibrahim WN, Hussain SA (2020) Preparation, characterization and therapeutic properties of gum arabic-stabilized gallic acid nanoparticles. Sci Rep. 10(1):17808. https://doi.org/10.1038/s41598-020-71175-8 Song Y, Jin SJ, Cui LH, Ji XJ, Yang FG (2013) Immunomodulatory effect of Stichopusjaponicus acid mucopolysaccharide on experimental hepatocellular carcinoma in rats. Molecules 18(6):7179–7193 Motalleb G, Hanachi P, Fauziah O et al (2008) Effect of Berberis vulgaris fruit extract on alpha-fetoprotein gene expression and chemical carcinogen metabolizing enzymes activities in hepatocarcinogenesis rats. IJCP 1:33–44 Lawal RA, Ozaslan MD, Odesanmi OS et al (2013) Cytotoxic and antiproliferative activity of Securidacalongepedunculata aqueous extract on Ehrlich ascites carcinoma cells in Swiss albino mice. Int J Appl Res Nat Prod 5(4):19–27 Ramakrishnan G, Augustine TA, Jagan S et al (2007) Effect of silymarin on N-nitrosodiethylamine induced hepatocarcinogenesis in rats. Exp Oncol 29(1):39–44 Salem A, Noaman E, Kandil E et al (2016) Crystal structure and chemotherapeutic efficacy of the novel compound,gallium tetrachloride betaine, against breast cancer using nanotechnology. Tumor Biol 37(8):11025–11038 Wen W, Lu J, Zhang K, Chen S (2008) Grape seed extract inhibits angiogenesis via suppression of the vascular endothelial growth factor receptor signaling pathway. Cancer Prev Res (Phila) 1(7):554–561 Chitambar CR, Wereley JP, Matsuyama S (2006) Gallium-induced cell death in lymphoma: role of transferrin receptor cycling, involvement of Bax and the mitochondria, and effects of proteasome inhibition. Mol Cancer Ther 5:2834–2843 Mothersill C, Seymour CB (2006) Radiation-induced bystander effects and the DNA paradigm: an “out of field” perspective. Mutat Res 597(1–2):5–10 Banchroft JD, Stevens A, Turner DR (1996) Theory and practice of histological techniques. Churchill Livingstone, New York; London; San Francisco, CA Portess DI, Bauer G, Hill MA et al (2007) Low dose irradiation of non-transformed cells stimulates the selective removal of pre-cancerous cells via intercellular induction of apoptosis. Cancer Res 67:1246–1253 Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249