Regulation of Interfacial Charge Transfer and Recombination for Efficient Planar Perovskite Solar Cells

Solar RRL - Tập 4 Số 2 - 2020
Xiaoqiang Shi1,2, Ruochen Chen1,2, Tingting Jiang1,2, Shuang Ma1,2, Xuepeng Liu1,2, Yong Ding1,2, Molang Cai1,2, Jihuai Wu3, Songyuan Dai1,2
1Beijing Key Laboratory of Novel Thin-Film Solar Cells, North China Electric Power University, Beijing, 102206 P. R. China
2State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, P.R. China
3Fujian Provincial Key Laboratory of Photoelectric Functional Materials, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021 P. R. China

Tóm tắt

Control of dynamics at the electron transport layer–perovskite interface, such as charge transfer and recombination, is essential in achieving high‐efficiency planar perovskite solar cells (PSCs). Herein, it was observed that the trade‐off between unfavorable electron transport of a thick SnO2 film and serious electron recombination at thin SnO2 film/perovskite interfaces is essential for the performance of SnO2‐based planar PSCs. The optimized efficiency of devices beyond 20% is obtained by using a two‐step deposition of SnO2. Moreover, trap‐assisted carrier recombination is significantly suppressed by using the diethylenetriaminepentaacetic acid passivator via the formation of coordination with undercoordinated Sn and Pb2+ ions. As a result, the champion device demonstrates a promising efficiency of 21.28% with negligible hysteresis and much improved environmental stability, i.e., retaining 98% of the initial efficiency under ambient atmosphere over 1000 h.

Từ khóa


Tài liệu tham khảo

10.1002/adma.201703852

10.1038/s41467-018-05760-x

10.1039/C9TA02094B

10.1002/solr.201800177

10.1002/admi.201800367

10.1126/science.aai9081

10.1002/admi.201600122

10.1002/adma.201600619

10.1002/smll.201801154

10.1039/C5RA01540E

10.1039/C5TA01207D

10.1021/jacs.5b01994

10.1038/nenergy.2016.177

10.1039/C5TA09011C

10.1039/C7TA02376F

10.1016/j.nanoen.2018.04.027

10.1002/adma.201706023

10.1016/j.mtener.2019.03.005

10.1002/adma.201805153

10.1039/C6EE02139E

10.1002/advs.201700031

Bensouici F., 2015, Progress in Clean Energy, 763, 10.1007/978-3-319-16709-1_56

10.1021/nl501838y

10.1039/C8EE02242A

10.1039/C9EE00453J

10.1002/anie.201306709

10.1021/am507334m

10.1021/jacs.5b10614

10.1039/C9TA00398C

10.1002/aenm.201800715

10.1038/nchem.2324

10.1002/adfm.201604018

10.1002/adma.201701073

10.1039/C8TA00457A

10.1039/C7TA08040A

Liu Z., 2019, Angew. Chem., Int. Ed.

10.7567/APEX.6.015001

10.1039/C4EE03171G

10.1103/PhysRevB.82.245207

10.1002/advs.201800130

10.1002/solr.201700117