Regularized nonparametric filtering of signal with unknown distribution in nonlinear observation model

А. В. Добровидов1
1Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Lehmann, E.L., Testing Statistical Hypotheses, New York: Wiley, 1959. Translated under the title Proverka statisticheskikh gipotez, Moscow: Nauka, 1977.

Dobrovidov, A.V., Koshkin, G.M., and Vasiliev, V.A., Non-Parametric State Space Models, Heber City: Kendrick Press, 2012.

Dobrovidov, A.V., Nonparametric Methods of Nonlinear Filtering of Stationary Random Sequences, Autom. Remote Control, 1983, vol. 44, no. 6, part 2, pp. 757–758.

Pensky, M., Empirical Bayes Estimation of a Scale Parameter, Math. Methods Statist., 1996, vol. 5, pp. 316–331.

Pensky, M., A General Approach to Nonparametric Empirical Bayes Estimation, Statist., 1997, vol. 29, pp. 61–80.

Pensky, M. and Singh, R.S., Empirical Bayes Estimation of Reliability Characteristics for an Exponential Family, Can. J. Statist., 1999, vol. 27, pp. 127–136.

Markovich, L.A., The Optimal Filtering Equation and Its Connection to Kalman Filter, Tr. XII Vseross. soveshchan. po problemam upravleniya (VSPU-2014) (Proc. XII All-Russian Meeting on Control Problems (AMCP-2014)), Moscow: Inst. Probl. Upravlen., June 16–19, 2014, pp. 1108–1113, ISBN 978-5-91450-151-5.

Dobrovidov, A.V., Stable Nonparametric Signal Filtration in Nonlinear Models, Topics in Nonparametric Statistics. Proc. First Conf. of the Int. Society for Nonparametric Statistics, New York: Springer, 2014, vol. XVI, pp. 61–74.

Bosq, S., Nonparametric Statistics for Stochastic Processes. Estimation and Prediction, New York: Springer, 1996.

Ibragimov, I.A. and Linnik, Yu.V., Nezavisimye i statsionarno svyazannye velichiny (Independent and Stationary Bound Variables), Moscow: Fizmatlit, 1965.

Vasil’ev, V.A., Dobrovidov, A.V., and Koshkin, G.M., Neparametricheskoe otsenivanie funktsionalov ot raspredelenii statsionarnykh posledovatel’nostei (Nonparametric Estimation of Functionals of Stationary Sequence Distributions), Moscow: Nauka, 2004.

Parzen, E., On Estimation of a Probability Density Function and Mode, Ann. Math. Statist., 1962, vol. 33, no. 3, p. 1065.

Bouezmarni, T. and Rombouts, J., Nonparametric Density Estimation for Multivariate Bounded Data, J. Statist. Planning Inference, 2010, vol. 140, no. 1, pp. 139–152.

Chen, S.X., Probability Density Function Estimation Using Gamma Kernels, Ann. Inst. Statist. Math., 2000, vol. 52, pp. 471–480.

Markovich, L., Gamma Kernel Estimation of Multivariate Density and Its Derivative on the Nonnegative Semi-axis by Dependent Data, arXiv:1410.2507v2, 2015.

Turlach, B.A., Bandwidth Selection in Kernel Density Estimation: A Review, Louvain-la-Neuve: CORE and Inst. de Statistique, 1993.

Devroye, L. and Györfi, L., Nonparametric Density Estimation, New York: Wiley, 1985. Translated under the title Neparametricheskoe otsenivanie plotnosti, Moscow: Mir, 1988.

Tellambura, C. and Jayalath, A.D.S., Generation of Bivariate Rayleigh and Nakagami-m Fadding Envelopes, IEEE Commun. Lett., 2000, vol. 5, pp. 170–172.

Davydov, Yu.A., On the Convergence of Distributions Induced by Stationary Random Processes, Teor. Veroyatn. Primenen., 1968, vol. XIII, no. 4, pp. 730–737.

Masry, E., Probability Density Estimation from Sampled Data, IEEE Trans. Inform. Theory, 1983, vol. IT-29, no. 5, pp. 696–709.

Brown, B.M. and Chen, S.X., Beta-Bernstein Smoothing for Regression Curves with Compact Supports, Scand. J. Statist., 1999, vol. 26, pp. 47–59.