Regularized iterative Weiner filter method for blind image deconvolution
Tài liệu tham khảo
Levin, 2011, Understanding blind deconvolution algorithms, IEEE Trans. Pattern Anal. Mach. Intell., 33, 2354, 10.1109/TPAMI.2011.148
Kundur, 1996, Blind image deconvolution, IEEE Signal Process. Mag., 13, 43, 10.1109/79.489268
Wiener, 1949
Rafael Gonzalez, 2007
Richardson, 1972, Bayesian-based iterative method of image restoration, J. Opt. Soc. Amer., 62, 55, 10.1364/JOSA.62.000055
Lucy, 1974, An iterative technique for the rectification of observed distributions, Astron. J., 79, 745, 10.1086/111605
Ayers, 1988, Iterative blind deconvolution method and its applications, Opt. Lett., 13, 547, 10.1364/OL.13.000547
Tofighi, 2016, Phase and tv based convex sets for blind deconvolution of microscopic images, IEEE J. Sel. Top. Sign. Proces., 10, 81, 10.1109/JSTSP.2015.2502541
Fish, 1995, Blind deconvolution by means of the Richardson–Lucy algorithm, J. Opt. Soc. Am. A, 12, 58, 10.1364/JOSAA.12.000058
Biggs, 1997, Acceleration of iterative image restoration algorithms, Appl. Opt., 36, 1766, 10.1364/AO.36.001766
Dey, 2006, Richardson–Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution, Microsc. Res. Tech., 69, 260, 10.1002/jemt.20294
Laasmaa, 2011, Application of regularized Richardson–Lucy algorithm for deconvolution of confocal microscopy images, J. Microsc., 243, 124, 10.1111/j.1365-2818.2011.03486.x
Seo, 2014, Spatially varying regularization of deconvolution in 3D microscopy, J. Microsc., 255, 94, 10.1111/jmi.12141
You, 1996, A regularization approach to joint blur identification and image restoration, IEEE Trans. Image Process., 5, 416, 10.1109/83.491316
Chan, 1998, Total variation blind deconvolution, IEEE Trans. Image Process., 7, 370, 10.1109/83.661187
Rudin, 1992, Nonlinear total variation based noise removal algorithms, Physica D, 60, 259, 10.1016/0167-2789(92)90242-F
Krishnan, 2011, Blind deconvolution using a normalized sparsity measure, 233
Fergus, 2006, Removing camera shake from a single photograph, 787
Li Xu, Shicheng Zheng, Jiaya Jia, Unnatural l0 sparse representation for natural image deblurring, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 1107–1114.
Pan, 2017, L0-regularized intensity and gradient prior for deblurring text images and beyond, IEEE Trans. Pattern Anal. Mach. Intell., 39, 342, 10.1109/TPAMI.2016.2551244
Cai, 2009, Blind motion deblurring from a single image using sparse approximation, 104
Cai, 2012, Framelet-based blind motion deblurring from a single image, IEEE Trans. Image Process., 21, 562, 10.1109/TIP.2011.2164413
Ren, 2016, Image deblurring via enhanced low-rank prior, IEEE Trans. Image Process., 25, 3426, 10.1109/TIP.2016.2571062
Daniele Perrone, Paolo Favaro, Total variation blind deconvolution: the devil is in the details, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 2909–2916.
Li, 2012, Total variation blind deconvolution employing split Bregman iteration, J. Vis. Commun. Image Represent., 23, 409, 10.1016/j.jvcir.2011.12.003
Sroubek, 2012, Robust multichannel blind deconvolution via fast alternating minimization, IEEE Trans. Image Process., 21, 1687, 10.1109/TIP.2011.2175740
Zhang, 2009, Multilayer ensemble pruning via novel multi-sub-swarm particle swarm optimization, J. UCS, 15, 840
Zhang, 2009, Dimension reduction using semi-supervised locally linear embedding for plant leaf classification, Emerg. Intell. Comput. Technol. Appl., 948
Chau, 2010, A hybrid model coupled with singular spectrum analysis for daily rainfall prediction, J. Hydroinform., 12, 458, 10.2166/hydro.2010.032
Taormina, 2015, Data-driven input variable selection for rainfall–runoff modeling using binary-coded particle swarm optimization and Extreme Learning Machines, J. Hydrol., 529, 1617, 10.1016/j.jhydrol.2015.08.022
Bao, 2016, Image restoration by minimizing zero norm of wavelet frame coefficients, Inverse Problems, 32, 115004, 10.1088/0266-5611/32/11/115004
Wu, 2010, Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models, SIAM J. Imaging Sci., 3, 300, 10.1137/090767558
Zhang, 2014, A modified spectral conjugate gradient projection algorithm for total variation image restoration, Appl. Math. Lett., 27, 26, 10.1016/j.aml.2013.08.006
Esser, 2010, A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science, SIAM J. Imaging Sci., 3, 1015, 10.1137/09076934X
Chambolle, 2011, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis., 40, 120, 10.1007/s10851-010-0251-1
Goldstein, 2009, The split Bregman method for L1-regularized problems, SIAM J. Imaging Sci., 2, 323, 10.1137/080725891
Li, 2014, A universal variational framework for sparsity-based image inpainting, IEEE Trans. Image Process., 23, 4242, 10.1109/TIP.2014.2346030
Cai, 2012, Image restoration: total variation, wavelet frames, and beyond, J. Amer. Math. Soc., 25, 1033, 10.1090/S0894-0347-2012-00740-1
Gilboa, 2008, Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7, 1005, 10.1137/070698592
Lysaker, 2003, Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE Trans. Image Process., 12, 1579, 10.1109/TIP.2003.819229
Li, 2007, Image restoration combining a total variational filter and a fourth-order filter, J. Vis. Commun. Image Represent., 18, 322, 10.1016/j.jvcir.2007.04.005
Pankajakshan, 2009, Blind deconvolution for thin-layered confocal imaging, Appl. Opt., 48, 4437, 10.1364/AO.48.004437
Zhang, 2007, Gaussian approximations of fluorescence microscope point-spread function models, Appl. Opt., 46, 1819, 10.1364/AO.46.001819
Akhan, 2015, Nanoparticle labeling of bone marrow-derived rat mesenchymal stem cells: their use in differentiation and tracking, Biomed. Res. Internat., 2015, 10.1155/2015/298430
Schuler, 2016, Learning to deblur, IEEE Trans. Pattern Anal. Mach. Intell., 38, 1439, 10.1109/TPAMI.2015.2481418
Levin, 2009, Understanding and evaluating blind deconvolution algorithms, 1964