Regularized greedy column subset selection

Information Sciences - Tập 486 - Trang 393-418 - 2019
Bruno Ordozgoiti1, Alberto Mozo1, Jesús García López de Lacalle2
1Department of Computer Systems, Universidad Politécnica de Madrid Spain
2Department of Applied Mathematics, Universidad Politécnica de Madrid, Spain

Tài liệu tham khảo

Altschuler, 2016, Greedy column subset selection: new bounds and distributed algorithms, 2539 Bishop, 1995, Training with noise is equivalent to tikhonov regularization, Neural Comput., 7, 108, 10.1162/neco.1995.7.1.108 Boutsidis, 2014, Near-optimal column-based matrix reconstruction, SIAM J. Comput., 43, 687, 10.1137/12086755X Boutsidis, 2009, An improved approximation algorithm for the column subset selection problem, 968 Cai, 2010, Unsupervised feature selection for multi-cluster data, 333 Chan, 1987, Rank revealing qr factorizations, Linear Algebra Appl., 88 Çivril, 2014, Column subset selection problem is ug-hard, J. Comput. Syst. Sci., 80, 849, 10.1016/j.jcss.2014.01.004 Civril, 2012, Column subset selection via sparse approximation of svd, Theor. Comput. Sci., 421, 1, 10.1016/j.tcs.2011.11.019 Cortes, 1995, Support-vector networks, Mach. Learn., 20, 273, 10.1007/BF00994018 Deshpande, 2010, Efficient volume sampling for row/column subset selection, 329 Du, 2015, Unsupervised feature selection with adaptive structure learning, 209 Dy, 2003, Unsupervised feature selection applied to content-based retrieval of lung images, IEEE Trans. Pattern Anal. Mach. Intell., 25, 373, 10.1109/TPAMI.2003.1182100 Eckart, 1936, The approximation of one matrix by another of lower rank, Psychometrika, 1, 211, 10.1007/BF02288367 Fanty, 1991, Spoken letter recognition, 220 Farahat, 2011, An efficient greedy method for unsupervised feature selection, 161 Fernandes, 2015, A proactive intelligent decision support system for predicting the popularity of online news, 535 Frieze, 2004, Fast monte-carlo algorithms for finding low-rank approximations, J. ACM (JACM), 51, 1025, 10.1145/1039488.1039494 Georghiades, 2001, From few to many: illumination cone models for face recognition under variable lighting and pose, Pattern Anal. Mach. Intell., IEEE Trans., 23, 643, 10.1109/34.927464 Golub, 1999, Tikhonov regularization and total least squares, SIAM J. Matrix Anal. Appl., 21, 185, 10.1137/S0895479897326432 Gu, 1996, Efficient algorithms for computing a strong rank-revealing qr factorization, SIAM J. Sci. Comput., 17, 848, 10.1137/0917055 Guruswami, 2012, Optimal column-based low-rank matrix reconstruction, 1207 Guyon, 2003, An introduction to variable and feature selection, J. Mach. Learn. Res., 3, 1157 He, 2012, l 2, 1 regularized correntropy for robust feature selection, 2504 He, 2005, Laplacian score for feature selection, 507 Hoerl, 1970, Ridge regression: biased estimation for nonorthogonal problems, Technometrics, 12, 55, 10.1080/00401706.1970.10488634 Hou, 2014, Joint embedding learning and sparse regression: a framework for unsupervised feature selection, IEEE Trans. Cybern., 44, 793, 10.1109/TCYB.2013.2272642 Hou, 2011, Feature selection via joint embedding learning and sparse regression, 22, 1324 Krogh, 1992, A simple weight decay can improve generalization, 950 LeCun, 2010, Mnist handwritten digit database, AT&T Labs [Online]. Available: http://yann. lecun. com/exdb/mnist, 2 Li, 2012, Unsupervised feature selection using nonnegative spectral analysis., 2012, 1026 Lutkepohl, 1997, Handbook of matrices., Comput. Stat. Data Anal., 2, 243 Mahoney, 2009, Cur matrix decompositions for improved data analysis, Proc. Natl. Acad. Sci., 106, 697, 10.1073/pnas.0803205106 Mitra, 2002, Unsupervised feature selection using feature similarity, Pattern Anal. Mach. Intell., IEEE Trans., 24, 301, 10.1109/34.990133 Murphy, 2012 Nene, 1996, Columbia Object Image Library (COIL-20) Ordozgoiti, 2016, A fast iterative algorithm for improved unsupervised feature selection, 390 Ordozgoiti, 2017, Iterative column subset selection, Knowl. Inf. Syst., 1 Qian, 2013, Robust unsupervised feature selection., 1621 Samaria, 1994, Parameterisation of a stochastic model for human face identification, 138 Shitov, 2017, Column subset selection is np-complete, arXiv preprint arXiv:1701.02764 Srivastava, 2014, Dropout: a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res., 15, 1929 Thompson, 1972, Principal submatrices ix: interlacing inequalities for singular values of submatrices, Linear Algebra Appl., 5, 1, 10.1016/0024-3795(72)90013-4 Tibshirani, 1996, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B (Methodological), 267, 10.1111/j.2517-6161.1996.tb02080.x Wang, 2015, Unsupervised feature selection via maximum projection and minimum redundancy, Knowl. Based Syst., 75, 19, 10.1016/j.knosys.2014.11.008 Wang, 2015, Embedded unsupervised feature selection., 470 Xu, 2010, Discriminative semi-supervised feature selection via manifold regularization, IEEE Trans. Neural Netw., 21, 1033, 10.1109/TNN.2010.2047114 Yang, 2011, l2, 1-norm regularized discriminative feature selection for unsupervised learning, 22, 1589 Zhao, 2007, Spectral feature selection for supervised and unsupervised learning, 1151 Zhao, 2013, On similarity preserving feature selection, IEEE Trans. Knowl. Data Eng., 25, 619, 10.1109/TKDE.2011.222 Zhao, 2010, Efficient spectral feature selection with minimum redundancy., 673