Regularized greedy column subset selection
Tài liệu tham khảo
Altschuler, 2016, Greedy column subset selection: new bounds and distributed algorithms, 2539
Bishop, 1995, Training with noise is equivalent to tikhonov regularization, Neural Comput., 7, 108, 10.1162/neco.1995.7.1.108
Boutsidis, 2014, Near-optimal column-based matrix reconstruction, SIAM J. Comput., 43, 687, 10.1137/12086755X
Boutsidis, 2009, An improved approximation algorithm for the column subset selection problem, 968
Cai, 2010, Unsupervised feature selection for multi-cluster data, 333
Chan, 1987, Rank revealing qr factorizations, Linear Algebra Appl., 88
Çivril, 2014, Column subset selection problem is ug-hard, J. Comput. Syst. Sci., 80, 849, 10.1016/j.jcss.2014.01.004
Civril, 2012, Column subset selection via sparse approximation of svd, Theor. Comput. Sci., 421, 1, 10.1016/j.tcs.2011.11.019
Cortes, 1995, Support-vector networks, Mach. Learn., 20, 273, 10.1007/BF00994018
Deshpande, 2010, Efficient volume sampling for row/column subset selection, 329
Du, 2015, Unsupervised feature selection with adaptive structure learning, 209
Dy, 2003, Unsupervised feature selection applied to content-based retrieval of lung images, IEEE Trans. Pattern Anal. Mach. Intell., 25, 373, 10.1109/TPAMI.2003.1182100
Eckart, 1936, The approximation of one matrix by another of lower rank, Psychometrika, 1, 211, 10.1007/BF02288367
Fanty, 1991, Spoken letter recognition, 220
Farahat, 2011, An efficient greedy method for unsupervised feature selection, 161
Fernandes, 2015, A proactive intelligent decision support system for predicting the popularity of online news, 535
Frieze, 2004, Fast monte-carlo algorithms for finding low-rank approximations, J. ACM (JACM), 51, 1025, 10.1145/1039488.1039494
Georghiades, 2001, From few to many: illumination cone models for face recognition under variable lighting and pose, Pattern Anal. Mach. Intell., IEEE Trans., 23, 643, 10.1109/34.927464
Golub, 1999, Tikhonov regularization and total least squares, SIAM J. Matrix Anal. Appl., 21, 185, 10.1137/S0895479897326432
Gu, 1996, Efficient algorithms for computing a strong rank-revealing qr factorization, SIAM J. Sci. Comput., 17, 848, 10.1137/0917055
Guruswami, 2012, Optimal column-based low-rank matrix reconstruction, 1207
Guyon, 2003, An introduction to variable and feature selection, J. Mach. Learn. Res., 3, 1157
He, 2012, l 2, 1 regularized correntropy for robust feature selection, 2504
He, 2005, Laplacian score for feature selection, 507
Hoerl, 1970, Ridge regression: biased estimation for nonorthogonal problems, Technometrics, 12, 55, 10.1080/00401706.1970.10488634
Hou, 2014, Joint embedding learning and sparse regression: a framework for unsupervised feature selection, IEEE Trans. Cybern., 44, 793, 10.1109/TCYB.2013.2272642
Hou, 2011, Feature selection via joint embedding learning and sparse regression, 22, 1324
Krogh, 1992, A simple weight decay can improve generalization, 950
LeCun, 2010, Mnist handwritten digit database, AT&T Labs [Online]. Available: http://yann. lecun. com/exdb/mnist, 2
Li, 2012, Unsupervised feature selection using nonnegative spectral analysis., 2012, 1026
Lutkepohl, 1997, Handbook of matrices., Comput. Stat. Data Anal., 2, 243
Mahoney, 2009, Cur matrix decompositions for improved data analysis, Proc. Natl. Acad. Sci., 106, 697, 10.1073/pnas.0803205106
Mitra, 2002, Unsupervised feature selection using feature similarity, Pattern Anal. Mach. Intell., IEEE Trans., 24, 301, 10.1109/34.990133
Murphy, 2012
Nene, 1996, Columbia Object Image Library (COIL-20)
Ordozgoiti, 2016, A fast iterative algorithm for improved unsupervised feature selection, 390
Ordozgoiti, 2017, Iterative column subset selection, Knowl. Inf. Syst., 1
Qian, 2013, Robust unsupervised feature selection., 1621
Samaria, 1994, Parameterisation of a stochastic model for human face identification, 138
Shitov, 2017, Column subset selection is np-complete, arXiv preprint arXiv:1701.02764
Srivastava, 2014, Dropout: a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res., 15, 1929
Thompson, 1972, Principal submatrices ix: interlacing inequalities for singular values of submatrices, Linear Algebra Appl., 5, 1, 10.1016/0024-3795(72)90013-4
Tibshirani, 1996, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B (Methodological), 267, 10.1111/j.2517-6161.1996.tb02080.x
Wang, 2015, Unsupervised feature selection via maximum projection and minimum redundancy, Knowl. Based Syst., 75, 19, 10.1016/j.knosys.2014.11.008
Wang, 2015, Embedded unsupervised feature selection., 470
Xu, 2010, Discriminative semi-supervised feature selection via manifold regularization, IEEE Trans. Neural Netw., 21, 1033, 10.1109/TNN.2010.2047114
Yang, 2011, l2, 1-norm regularized discriminative feature selection for unsupervised learning, 22, 1589
Zhao, 2007, Spectral feature selection for supervised and unsupervised learning, 1151
Zhao, 2013, On similarity preserving feature selection, IEEE Trans. Knowl. Data Eng., 25, 619, 10.1109/TKDE.2011.222
Zhao, 2010, Efficient spectral feature selection with minimum redundancy., 673