Regularity results for a class of obstacle problems
Tóm tắt
Từ khóa
Tài liệu tham khảo
E. Acerbi, G. Mingione: Regularity results for a class of functionals with nonstandard growth. Arch. Ration. Mech. Anal. 156 (2001), 121–140.
H. J. Choe: A regularity theory for a general class of quasilinear elliptic partial differential equations and obstacle problems. Arch. Ration. Mech. Anal. 114 (1991), 383–394.
A. Coscia, G. Mingione: Hölder continuity of the gradient of p(x)-harmonic mappings. C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), 363–368.
G. Cupini, N. Fusco, and R. Petti: Hölder continuity of local minimizers. J. Math. Anal. Appl. 235 (1999), 578–597.
G. Cupini, A. P. Migliorini: Hölder continuity for local minimizers of a nonconvex variational problem. J. Convex Anal. 10 (2003), 389–408.
G. Cupini, R. Petti: Morrey spaces and local regularity of minimizers of variational integrals. Rend. Mat. Appl., VII. Ser. 21 (2001), 121–141.
M. Eleuteri: Hölder continuity results for a class of functionals with non standard growth. Boll. Unione Mat. Ital. 8, 7-B (2004), 129–157.
L. Esposito, F. Leonetti, and G. Mingione: Regularity results for minimizers of irregular integrals with (p, q) growth. Forum Math. 14 (2002), 245–272.
V. Ferone, N. Fusco: Continuity properties of minimizers of integral functionals in a limit case. J. Math. Anal. Appl. 202 (1996), 27–52.
I. Fonseca, N. Fusco: Regularity results for anisotropic image segmentation models. Ann. Sc. Norm. Super. Pisa 24 (1997), 463–499.
I. Fonseca, N. Fusco, and P. Marcellini: An existence result for a nonconvex variational problem via regularity. ESAIM, Control Optim. Calc. Var. 7 (2002), 69–95.
N. Fusco, J. Hutchinson: C 1,α-partial regularity of functions minimising quasiconvex integrals. Manuscr. Math. 54 (1985), 121–143.
M. Giaquinta, E. Giusti: Quasi-minima. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1 (1984), 79–107.
D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin, 1977.