Regularity of the m-symphonic map

Masashi Misawa1, Nobumitsu Nakauchi2
1Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
2Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan

Tóm tắt

AbstractWe introduce a new energy functional of conformal invariance and consider its critical points, named the m-symphonic map. We study a Hölder continuity of m-symphonic maps from domains of $$\mathbb {R}^m$$ R m into the spheres in the higher dimension $$m \ge 4$$ m 4 .

Từ khóa


Tài liệu tham khảo

Chen, Y., Hong, M.-C., Hungerbühler, N.: Heat flow of $$p$$-harmonic maps with values into spheres. Math. Z. 215, 25–35 (1994)

Coifman, R., Lions, P.L., Meyer, Y., Semmes, S.: Compensated compactness and Hardy spaces. J. Math. Pures Appl. 72, 247–286 (1993)

Eells, J., Lemaire, L.: A report on harmonic maps. Bull. Lond. Math. Soc. 10, 1–68 (1978)

Eells, J., Lemaire, L.: Another report on harmonic maps. Bull. Lond. Math. Soc. 20, 385–524 (1988)

Evans, L.C.: Partial regularity for stationary harmonic maps into spheres, Arch. Ration. Mech. Anal. 20, 385–524 (1988)

Evans, L.C.: Weak convergence methods of nonlinear partial differential equations. CBMS Regional Conference Series in Mathematics, 74. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (1990)

Fefferman, C., Stein, E.M.: $$H^{p}$$ spaces of several variables. Acta Math. 192(3–4), 137–193 (1972)

Fuchs, M.: The blow-up of $$p$$-harmonic maps. Manuscr. math. 81, 89–94 (1993)

Giaquinta, M.: Introduction to Regularity Theory for Nonlinear Elliptic Systems. Birkhäuser Verlag, Basel (1993)

Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific Publishing Co., London (2003)

Goldstein, P., Strzelecki, P., Zatorska-Goldstein, A.: On polyharmonic maps into spheres in the critical dimension. Ann. Inst. H. Poincaré Anal. Non. Linéaire 26, 1387–1405 (2009)

Hélein, F.: Harmonic maps, conservation laws and moving frames, Cambridge Tracs in Mathematics, vol. 150. Cambridge University Press, Cambridge (2002)

Hildebrandt, S., Widman, K.-O.: Some regularity results for quasilinear elliptic systems of second order. Math. Z. 142, 67–86 (1975)

Iwaniec, T., Martin, G.: Geometric function theory and non-linear analysis, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, (2001). Zbl 1045.30011 MR 1859913

Kawai, S., Nakauchi, N.: Some results for stationary maps of a functional related to pullback metrics. Nonlinear Anal. 74, 2284–2295 (2011)

Leone, C., Misawa, M., Verde, A.: A global existence result for the heat flow of higher dimensional H-systems. J. Math. Pures Appl. 97(3), 282–294 (2012)

Misawa, M., Nakauchi, N.: A Hölder continuity of minimizing symphonic maps. Nonlinear Anal. 75, 5971–5974 (2012)

Misawa, M., Nakauchi, N.: A Hölder continuity of symphonic maps into the spheres. Calc. Var. PDE 55, 1–20 (2016)

Morrey, C.B.: Multiple Integrals in the Calculus of Variations. Springer, Berlin (1966)

Nakauchi, N.: A variational problem related to conformal maps. Osaka J. Math. 48, 717–739 (2011)

Nakauchi, N., Takenaka, Y.: A variational problem for pullback metrics. Ricerche di Mat. 60, 219–235 (2011)

Riviére, T., Strzelecki, P.: A sharp nonlinear Gagliardo-Nirenberg-type estimates and applications to the regularity of elliptic systems. Comm. Partial Differ. Equ. 30(4–6), 589–604 (2005)

Schikorra, A., Strzelecki, P.: Invitation to H-systems in higher dimensions: known results, new facts, and related open problems. EMS Surv. Math. Sci. 4(1), 21–42 (2017)

Stein, E.M.: Harmonic Analysis, Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

Strzelecki, P.: Regularity of p-harmonic maps from p-dimensional ball into a sphere. Manuscr. Math. 82(3–4), 407–415 (1994)

Strzelecki, P., Zatorska-Goldstein, A.: A compactness theorem for weak solutions of higher-dimensional H-systems. Duke Math. J. 121(2), 269–284 (2004)

Takeuchi, H.: Some conformal properties of p-harmonic maps and a regularity for sphere-valued p-harmonic maps. J. Math. Soc. Jpn. 46(2), 217–234 (1994)

Torchinsky, A.: Real Variable Methods in Harmonic Analysis. Academic Press, New York (1986)

Widman, K.-O.: Hölder continuity of solutions of elliptic systems. Manuscr. Math. 5, 299–308 (1971)

Zeidler, E.: Nonlinear Functional Analysis and its Applications II / B (Nonlinear Monotonic operators). Springer, New York (1990)