Regularity of Segal algebras

Functional Analysis and Its Applications - Tập 40 - Trang 62-65 - 2006
G. S. Mustafaev1
1Institute of Mathematics and Mechanics, Azerbaijan Academy of Sciences, Azerbaijan

Tóm tắt

Let A be a Banach algebra. The second dual A** can be equipped with two multiplications, each of which is a natural extension of the original multiplication in A. The algebra A is said to be Arens regular if these two multiplications coincide. We give necessary (and, for some classes of algebras, sufficient) conditions for the regularity of a Segal algebra. We also obtain necessary and sufficient conditions for the weak complete continuity of a Segal algebra.

Tài liệu tham khảo

J. Duncan and S. A. R. Hosseiniun, Proc. Roy. Soc. Edinburgh A, 84, 309–325 (1979). F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York-Heidelberg, 1973. N. Young, Quart. J. Math., 24, 59–62 (1972). I. Kaplansky, Duke Math. J., 16, 399–418 (1949). R. B. Burckel, Weakly Almost Periodic Functions on Semigroups, Gordon and Breach, New York, 1970. E. E. Granirer, Mem. Amer. Math. Soc., 123 (1972). E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 2, Springer-Verlag, New York-Berlin, 1970. J. T. Burnham, Proc. Amer. Math. Soc., 32, 551–555 (1972). B. A. Barnes, Pacific J. Math., 38, 1–7 (1971). H. Reiter, L 1-Algebras and Segal Algebras, Springer-Verlag, Berlin-New York, 1971. I. E. Segal, Trans. Amer. Math. Soc., 61, 69–105 (1947). S. Watanabe, Sci. Rep. Niigata Univ. Ser. A, 11, 95–101 (1974). M. Grosser, Proc. Amer. Math. Soc., 73, 363–364 (1979). F. P. Greenleaf, Invariant Means on Topological Groups and Their Applications, Van Nostrand, New York, 1969. A. Ülger, Quart. J. Math. (Oxford), 37, 495–497 (1986). A. Ülger, Proc. Amer. Math. Soc., 4, 697–704 (1987).