Regularity of Fluxes in Nonlinear Hyperbolic Balance Laws

Communications on Applied Mathematics and Computation - Tập 5 Số 3 - Trang 1289-1298 - 2023
Matania Ben‐Artzi1, Jiequan Li2,3
1Institute of Mathematics, Hebrew University of Jerusalem, Jerusalem, Israel
2Academy of Multidisciplinary Studies, Capital Normal University, Beijing, China
3State Key Laboratory for Turbulence Research and Complex System, Peking University, Beijing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ben-Artzi, M., Falcovitz, J.: Generalized Riemann Problems in Computational Fluid Dynamics. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2003)

Ben-Artzi, M., Li, J.Q.: Consistency of finite volume approximations to nonlinear hyperbolic balance laws. Math. Comp. 90, 141–169 (2021)

Chen, G.Q., Comi, G.E., Torres, M.: Cauchy fluxes and Gauss-Green formulas for divergence measure fields over general open sets. Arch. Rat. Mech. Anal. 233, 87–166 (2019)

Chen, G.Q., Frid, H.: Divergence-measure fields and hyperbolic conservation laws. Arch. Rat. Mech. Anal. 147, 89–118 (1999)

Chen, G.Q., Torres, M., Ziemer, W.: Gauss-Green theorem for weakly differentiable vector fields, sets of finite perimeter, and balance laws. Comm. Pure Appl. Math. 62, 242–304 (2009)

Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, 4th edn. Grundlehren der Mathematischen Wissenschaften, Springer, Heidelberg (2016)

Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence, RI (1998)

Eymard. R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, Vol. VII, pp. 713–1020. North-Holland, New York (2000)

Federer, H.: Geometric Measure Theory. Springer, Heidelberg (1969)

Godlewski, E., Raviart, P.A.: Hyperbolic Systems of Conservation Laws. Ellipses, Paris (1991)

Gurtin, M.E., Martins, L.C.: Cauchy’s theorem in classical physics. Arch. Rat. Mech. Anal. 60, 305–324 (1975/76)

Šilhavý, M.: The existence of the flux vector and the divergence theorem for general Cauchy fluxes. Arch. Rat. Mech. Anal. 90, 195–212 (1985)

Šilhavý, M.: Divergence-measure fields and Cauchy’s stress theorem. Rend. Sem. Mat. Padova 113, 15–45 (2005)

Spivak, M.: A Comprehensive Introduction to Differential Geometry. Vol. I. Publish or Perish, Inc., Houston, Texas (1979)

Van Leer, B.: On the relation between the upwind-differencing schemes of Godunov, Engquist-Osher and Roe. SIAM J. Sci. Stat. Comput. 5, 1–20 (1984)