Regularity of Fluxes in Nonlinear Hyperbolic Balance Laws
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ben-Artzi, M., Falcovitz, J.: Generalized Riemann Problems in Computational Fluid Dynamics. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2003)
Ben-Artzi, M., Li, J.Q.: Consistency of finite volume approximations to nonlinear hyperbolic balance laws. Math. Comp. 90, 141–169 (2021)
Chen, G.Q., Comi, G.E., Torres, M.: Cauchy fluxes and Gauss-Green formulas for divergence measure fields over general open sets. Arch. Rat. Mech. Anal. 233, 87–166 (2019)
Chen, G.Q., Frid, H.: Divergence-measure fields and hyperbolic conservation laws. Arch. Rat. Mech. Anal. 147, 89–118 (1999)
Chen, G.Q., Torres, M., Ziemer, W.: Gauss-Green theorem for weakly differentiable vector fields, sets of finite perimeter, and balance laws. Comm. Pure Appl. Math. 62, 242–304 (2009)
Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, 4th edn. Grundlehren der Mathematischen Wissenschaften, Springer, Heidelberg (2016)
Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence, RI (1998)
Eymard. R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, Vol. VII, pp. 713–1020. North-Holland, New York (2000)
Federer, H.: Geometric Measure Theory. Springer, Heidelberg (1969)
Godlewski, E., Raviart, P.A.: Hyperbolic Systems of Conservation Laws. Ellipses, Paris (1991)
Gurtin, M.E., Martins, L.C.: Cauchy’s theorem in classical physics. Arch. Rat. Mech. Anal. 60, 305–324 (1975/76)
Šilhavý, M.: The existence of the flux vector and the divergence theorem for general Cauchy fluxes. Arch. Rat. Mech. Anal. 90, 195–212 (1985)
Šilhavý, M.: Divergence-measure fields and Cauchy’s stress theorem. Rend. Sem. Mat. Padova 113, 15–45 (2005)
Spivak, M.: A Comprehensive Introduction to Differential Geometry. Vol. I. Publish or Perish, Inc., Houston, Texas (1979)