Regularity for quasi-linear parabolic equations with nonhomogeneous degeneracy or singularity
Tóm tắt
We introduce a new class of quasi-linear parabolic equations involving nonhomogeneous degeneracy or/and singularity
$$\begin{aligned} \partial _t u=[|D u|^q+a(x,t)|D u|^s]\left( \Delta u+(p-2)\left\langle D^2 u\frac{D u}{|D u|},\frac{D u}{|D u|}\right\rangle \right) , \end{aligned}$$
where
$$1
Từ khóa
Tài liệu tham khảo
Argiolas, R., Charro, F., Peral, I.: On the Aleksandrov–Bakelman–Pucci estimate for some elliptic and parabolic nonlinear operators. Arch. Ration. Mech. Anal. 202, 875–917 (2011)
Attouchi, A.: Local regularity for quasi-linear parabolic equations in non-divergence form. Nonlinear Anal. 199, 112051 (2020)
Attouchi, A., Parviainen, M.: Hölder regularity for the gradient of the inhomogeneous parabolic normalized \(p\)-Laplacian. Commun. Contemp. Math. 20(4), 27 (2018)
Attouchi, A., Parviainen, M., Ruosteenoja, E.: \(C^{1,\alpha }\) regularity for the normalized \(p\)-Poisson problem. J. Math. Pures Appl. 108, 553–591 (2017)
Attouchi, A., Ruosteenoja, E.: Remarks on regularity for \(p\)-Laplacian type equations in non-divergence form. J. Differ. Equ. 265, 1922–1961 (2018)
Attouchi, A., Ruosteenoja, E.: Gradient regularity for a singular parabolic equation in non-divergence form. Discrete Contin. Dyn. Syst. 40(10), 5955–5972 (2020)
Baasandorj, S., Byun, S.S., Oh, J.: Calderón–Zygmund estimates for generalized double phase problems. J. Funct. Anal. 279(7), 108670 (2020)
Banerjee, A., Garofalo, N.: Gradient bounds and monotonicity of the energy for some nonlinear singular diffusion equations. Indiana Univ. Math. J. 62(2), 699–736 (2013)
Banerjee, A., Garofalo, N.: On the Dirichlet boundary value problem for the normalized \(p\)-Laplacian evolution. Commun. Pure Appl. Anal. 14(1), 1–21 (2015)
Banerjee, A., Munive, I.H.: Gradient continuity estimates for the normalized \(p\)-Poisson equation. Commun. Contemp. Math. 22(8), 24 (2020)
Baroni, P., Colombo, M., Mingione, G.: Regularity for general functionals with double phase. Calc. Var. Partial. Differ. Equ. 57(2), 48 (2018)
Birindelli, I., Demengel, F.: Regularity and uniqueness of the first eigenfunction for singular fully nonlinear operators. J. Differ. Equ. 249, 1089–1110 (2010)
Buryachenko, K.O., Skrypnik, I.I.: Local continuity and Harnack’s inequality for double-phase parabolic equations. Potential Anal. 56, 137–164 (2022)
Byun, S.S., Oh, J.: Global gradient estimates for non-uniformly elliptic equations. Calc. Var. Partial. Differ. Equ. 56(2), 36 (2017)
Chen, Y., Giga, Y., Goto, S.: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differ. Geom. 33, 749–786 (1991)
Chlebicka, I., De Filippis, C.: Removable sets in non-uniformly elliptic problems. Ann. Mat. Pura Appl. 199, 619–649 (2020)
Chlebicka, I., Zatorska-Goldstein, A.: Generalized superharmonic functions with strongly nonlinear operator. Potential Anal. 57, 379–400 (2022)
Colasuonno, F., Squassina, M.: Eigenvalues for double phase variational integrals. Ann. Mat. Pura Appl. 195, 1917–1959 (2016)
Colombo, M., Mingione, G.: Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215, 443–496 (2015)
Colombo, M., Mingione, G.: Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal. 218, 219–273 (2015)
Colombo, M., Mingione, G.: Calderón–Zygmund estimates and non-uniformly elliptic operators. J. Funct. Anal. 270, 1416–1478 (2016)
Crandall, M.G.: Viscosity solutions: a primer. viscosity solutions and applications (Montecatini Terme, 1995). In: Lecture Notes in Mathematics, vol. 1660. Springer, Berlin, pp. 1–43 (1997)
Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27(1), 1–67 (1992)
Da Silva, J.V., Ricarte, G.C.: Geometric gradient estimates for fully nonlinear models with non-homogeneous degeneracy and applications. Calc. Var. Partial. Differ. Equ. 59(5), 33 (2020)
De Filippis, C.: Gradient bounds for solutions to irregular parabolic equations with \((p, q)\)-growth. Calc. Var. Partial. Differ. Equ. 59(5), 32 (2020)
De Filippis, C.: Regularity for solutions of fully nonlinear elliptic equations with nonhomogeneous degeneracy. Proc. R. Soc. Edinb. Sect. A 151(1), 110–132 (2021)
De Filippis, C., Mingione, G.: A borderline case of Calderón–Zygmund estimates for non-uniformly elliptic problems. St. Petersb. Math. J. 31(3), 455–477 (2020)
De Filippis, C., Mingione, G.: Manifold constrained non-uniformly elliptic problems. J. Geom. Anal. 30(2), 1661–1723 (2020)
De Filippis, C., Mingione, G.: Lipschitz bounds and nonautonomous integrals. Arch. Ration. Mech. Anal. 242(2), 973–1057 (2021)
Demengel, F.: Existence’s results for parabolic problems related to fully nonlinear operators degenerate or singular. Potential Anal. 35, 1–38 (2011)
DiBenedetto, E., Friedman, A.: Hölder estimates for nonlinear degenerate parabolic systems. J. Reine Angew. Math. 357, 1–22 (1985)
Does, K.: An evolution equation involving the normalized \(p\)-Laplacian. Commun. Pure Appl. Anal. 10(1), 361–396 (2011)
Fang, Y., Rădulescu, V., Zhang, C.: Regularity of solutions to degenerate fully nonlinear elliptic equations with variable exponent. Bull. Lond. Math. Soc. 53(6), 1863–1878 (2021)
Fang, Y., Rădulescu, V., Zhang, C., Zhang, X.: Gradient estimates for multi-phase problems in Campanato spaces. Indiana Univ. Math. J. 71(3), 1079–1099 (2022)
Fang, Y., Zhang, C.: Equivalence between distributional and viscosity solutions for the double-phase equation. Adv. Calc. Var. 15, 811–829 (2022)
Fang, Y., Zhang, C.: On weak and viscosity solutions of nonlocal double phase equations. Int. Math. Res. Not. IMRN (2021). https://doi.org/10.1093/imrn/rnab351
Giga, Y., Goto, S., Ishii, H., Sato, M.H.: Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains. Indiana Univ. Math. J. 40, 443–470 (1991)
Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)
Imbert, C., Jin, T., Silvestre, L.: Hölder gradient estimates for a class of singular or degenerate parabolic equations. Adv. Nonlinear Anal. 8, 845–867 (2019)
Imbert, C., Silvestre, L.: \(C^{1,\alpha }\) regularity of solutions of some degenerate fully non-linear elliptic equations. Adv. Math. 233, 196–206 (2013)
Jin, T., Silvestre, L.: Hölder gradient estimates for parabolic homogeneous \(p\)-Laplacian equations. J. Math. Pures Appl. 108(1), 63–87 (2017)
Juutinen, P.: Decay estimates in the supremum norm for the solutions to a nonlinear evolution equation. Proc. R. Soc. Edinb. Sect. A 144(3), 557–566 (2014)
Juutinen, P., Lindqvist, P., Manfredi, J.J.: On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation. SIAM J. Math. Anal. 33(3), 699–717 (2001)
Juutinen, P., Lukkari, T., Parviainen, M.: Equivalence of viscosity and weak solutions for the \(p(x)\)-Laplacian. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 1471–1487 (2010)
Karppinen, A., Lee, M.: Hölder continuity of the minimizer of an obstacle problem with generalized Orlicz growth. Int. Math. Res. Not. IMRN 2022, 15313–15354 (2022)
Kawohl, B., Krömer, S., Kurtz, J.: Radial eigenfunctions for the game-theoretic \(p\)-Laplacian on a ball. Differ. Integr. Equ. 27(7–8), 659–670 (2014)
Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs 23. American Mathematical Society, Providence (1968)
Lewicka, M., Manfredi, J.J.: Game theoretical methods in PDEs. Boll. Unione Mat. Ital. 7(3), 211–216 (2014)
Luiro, H., Parviainen, M., Saksman, E.: Harnack inequality for \(p\)-harmonic functions via stochastic games. Commun. Partial Differ. Equ. 38(11), 1985–2003 (2013)
Manfredi, J.J., Parviainen, M., Rossi, J.D.: An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games. SIAM J. Math. Anal. 42(5), 2058–2081 (2010)
Manfredi, J.J., Parviainen, M., Rossi, J.D.: Dynamic programming principle for tug-of-war games with noise. ESAIM Control Optim. Calc. Var. 18(1), 81–90 (2012)
Marcellini, P.: Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions. Arch. Ration. Mech. Anal. 105, 267–284 (1989)
Marcellini, P.: Regularity and existence of solutions of elliptic equations with \(p, q\)-growth conditions. J. Differ. Equ. 90, 1–30 (1991)
Marcellini, P.: Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Sc. Norm. Super. Pisa Cl. Sci. 23(4), 1–25 (1996)
Ohnuma, M., Sato, K.: Singular degenerate parabolic equations with applications to the \(p\)-Laplace diffusion equation. Commun. Partial Differ. Equ. 22, 381–411 (1997)
Parviainen, M., Vázquez, J.L.: Equivalence between radial solutions of different parabolic gradient-diffusion equations and applications. Ann. Sc. Norm. Super. Pisa Cl. Sci. 21(5), 303–359 (2020)
Peres, Y., Schramm, O., Sheffield, S., Wilson, D.B.: Tug-of-war and the infinity Laplacian. J. Am. Math. Soc. 22, 167–210 (2009)
Peres, Y., Sheffield, S.: Tug-of-war with noise: a game-theoretic view of the \(p\)-Laplacian. Duke Math. J. 145(1), 91–120 (2008)
Rossi, J.D.: Tug-of-war games and PDEs. Proc. R. Soc. Edinb. Sect. A 141(2), 319–369 (2011)
Ruosteenoja, E.: Local regularity results for value functions of tug-of-war with noise and running payoff. Adv. Calc. Var. 9(1), 1–17 (2016)
Wang, Y.: Small perturbation solutions for parabolic equations. Indiana Univ. Math. J. 62(2), 671–697 (2013)
Zhikov, V.V.: Lavrentiev phenomenon and homogeneization of some variational problems. C. R. Acad. Sci. Paris Sér I Math. 316, 435–439 (1993)
Zhikov, V.V.: On Lavrentiev phenomenon. Russ. J. Math. Phys. 3, 249–269 (1995)