Tính chất đều đặn của phương trình Navier-Stokes nén được với tính bất biến xê-năng hình trụ

Springer Science and Business Media LLC - Tập 2016 - Trang 1-16 - 2016
Lan Huang1, Ruxu Lian1
1College of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou, P.R. China

Tóm tắt

Bài báo này đề cập đến tính chất đều đặn của các nghiệm toàn cục trong không gian $H^{4}$ đối với các phương trình Navier-Stokes nén với tính bất biến xê-năng hình trụ trong $R^{3}$ . Một miền hình trụ đồng tâm hình tròn là một miền không bị giới hạn, nhưng chúng tôi giả định rằng nghiệm tương ứng chỉ phụ thuộc vào một biến bán kính, r trong $G=\{r\in R^{+},0< a\leq r\leq b<+\infty\}$ , trong đó miền liên quan G là một miền bị giới hạn. Một số ý tưởng mới và các ước lượng tinh vi hơn được đưa ra để chứng minh những kết quả này.

Từ khóa

#Navier-Stokes #nén được #tính bất biến xê-năng #miền hình trụ #nghiệm toàn cục

Tài liệu tham khảo

Liu, J, Lian, R: Global existence of the cylindrically symmetric strong solution to compressible Navier-Stokes equations. Abstr. Appl. Anal. 2014, Article ID 728715 (2014) Fang, D, Zhang, T: Global solutions of the Navier-Stokes equations for compressible flow with density-dependent viscosity and discontinuous initial data. J. Differ. Equ. 222, 63-94 (2006) Jiang, S, Xin, Z, Zhang, P: Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity. Methods Appl. Anal. 12, 239-252 (2005) Okada, M, Matus̆u-Nec̆asová, S̆, Makino, T: Free boundary problem for the equation of one-dimensional motion of compressible gas with density-dependent viscosity. Ann. Univ. Ferrara, Sez. 7: Sci. Mat. 48, 1-20 (2002) Qin, Y: Nonlinear Parabolic-Hyperbolic Coupled Systems and Their Attractors. In: Operator Theory: Advances and Applications. Advances in Partial Differential Equations, vol. 184. Birkhäuser, Basel (2008) Qin, Y, Huang, L, Yao, Z: Regularity of 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity. J. Differ. Equ. 245, 3956-3973 (2008) Vong, S, Yang, T, Zhu, C: Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum (II). J. Differ. Equ. 192, 475-501 (2003) Yang, T, Yao, Z, Zhu, C: Compressible Navier-Stokes equations with density-dependent viscosity and vacuum. Commun. Partial Differ. Equ. 26, 965-981 (2001) Yang, T, Zhao, H: A vacuum problem for the one-dimensional compressible Navier-Stokes equations with density dependent viscosity. J. Differ. Equ. 184, 163-184 (2002) Yang, T, Zhu, C: Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. Commun. Math. Phys. 230, 329-363 (2002) Zhu, C: Asymptotic behavior of compressible Navier-Stokes equations with density-dependent viscosity and vacuum. Commun. Math. Phys. 293, 279-299 (2010) Lian, R, Liu, J, Li, H, Xiao, L: Cauchy problem for the one-dimensional compressible Navier-Stokes equations. Acta Math. Sci. 32, 315-324 (2012) Bresch, D, Desjardins, B: Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Commun. Math. Phys. 238, 211-223 (2003) Bresch, D, Desjardins, B: On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models. J. Math. Pures Appl. 86, 362-368 (2006) Cui, H, Yao, Z: Asymptotic behavior of compressible p-th power Newtonian fluid with large initial data. J. Differ. Equ. 258, 919-953 (2015) Feireisl, E: Dynamics of Viscous Compressible Fluids. Oxford University Press, Oxford (2004) Frid, H, Shelukhin, V: Boundary layers for the Navier-Stokes equations of compressible fluids. Commun. Math. Phys. 208, 309-330 (1999) Frid, H, Shelukhin, VV: Vanishing shear viscosity in the equations of compressible fluids for the flows with the cylinder symmetry. SIAM J. Math. Anal. 31, 1144-1156 (2000) Guo, Z, Li, H, Xin, Z: Lagrange structure and dynamics for solutions to the spherically symmetric compressible Navier-Stokes equations. Commun. Math. Phys. 209, 371-412 (2012) Huang, L, Lian, R: Exponential stability of spherically symmetric solutions for compressible viscous micropolar fluid. J. Math. Phys. 56, 071503 (2015) Jiang, S, Zhang, J: Boundary layers for the Navier-Stokes equations of compressible heat-conducting flows with cylindrical symmetry. SIAM J. Math. Anal. 41, 237-268 (2009) Lian, R, Huang, L, Liu, J: Global solutions to the spherically symmetric compressible Navier-Stokes equations with density-dependent viscosity. J. Appl. Math. 2012, Article ID 395209 (2012) Lions, PL: Mathematical Topics in Fluids Dynamics. Volume 2: Compressible Models. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford (1996) Qin, Y: Exponential stability for the compressible Navier-Stokes equations with the cylinder symmetry in \(R^{3}\). Nonlinear Anal., Real World Appl. 11, 3590-3607 (2010) Qin, Y, Jiang, L: Global existence and exponential stability of solutions in \(H^{4}\) for the compressible Navier-Stokes equations with the cylinder symmetry. J. Differ. Equ. 249, 1353-1384 (2010) Yao, L, Zhang, T, Zhu, C: Boundary layers for compressible Navier-Stokes equations with density-dependent viscosity and cylindrical symmetry. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 28, 677-709 (2011) Zhang, T, Fang, D: Global behavior of spherically symmetric Navier-Stokes equations with density-dependent viscosity. J. Differ. Equ. 236, 293-341 (2007) Huang, X, Li, J, Xin, Z: Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations. Commun. Pure Appl. Math. 65, 549-585 (2012) Fan, J, Jiang, S: Zero shear viscosity limit for the Navier-Stokes equations of compressible isentropic fluids with cylindric symmetry. Rend. Semin. Mat. (Torino) 65, 35-52 (2007)