Regularity and time behavior of the solutions to weak monotone parabolic equations
Tóm tắt
In this paper, we study the behavior in time of the solutions for a class of parabolic problems including the p-Laplacian equation and the heat equation. Either the case of singular or degenerate equations is considered. The initial datum
$$u_0$$
is a summable function and a reaction term f is present in the problem. We prove that, despite the lack of regularity of
$$u_0$$
, immediate regularization of the solutions appears for data f sufficiently regular and we derive estimates that for zero data f become the known decay estimates for these kinds of problems. Besides, even if f is not regular, we show that it is possible to describe the behavior in time of a suitable class of solutions. Finally, we establish some uniqueness results for the solutions of these evolution problems.
Từ khóa
Tài liệu tham khảo
F. Andreu, J. M. Mazon, S. Segura De Leon, J. Toledo, Existence and uniqueness for a a degenerate parabolic equation with\(L^1(\Omega )\)data, Trans. Am. Math. Soc., 351 (1999), 285–306.
D. G. Aronson, J. Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rational Mech. Anal., 25 (1967), 81–122.
P. Baras, M. Pierre, Problémes paraboliques semilinéaires avec donnés mesures, Appl. Anal., 18 (1984), 11–149.
Ph. Bénilan, M.G. Crandall, Regularizing effects of homogeneous evolution equations, MRC Tech. Rep. n. 2076, Madison, WI (1980).
P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J.L. Vasquez, An\(L^1\)—theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1995), 241–273.
D. Blanchard, F. Murat, H. Redwane, Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems, J. Differ. Equ., 177 (2001), 331–374.
L. Boccardo, A. Dall’Aglio, T. Gallouet, L. Orsina, Nonlinear parabolic equations with measure data, J. Funct. Anal., 147 (1997), 237–258.
L. Boccardo, T. Gallouet, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87 (1989), 149–169.
L. Boccardo, L. Orsina, Some borderline cases of nonlinear parabolic equations with irregular data, J. Evol. Equ., 16 (2016), 51–64.
L. Boccardo, M.M. Porzio, A. Primo, Summability and existence results for nonlinear parabolic equations, Nonlinear Anal. TMA, 71 (2009), 978–990.
V. Bögelein, F. Duzaar, J. Kinnunen, C. Scheven, Higher integrability for doubly nonlinear parabolic systems, Journal de Mathématiques Pures et Appliquées. Neuviéme Série, 143 (2020), 31–72.
V. Bögelein, F. Duzaar, P. Marcellini, C. Scheven, Doubly nonlinear equations of porous medium type, Arch. Ration. Mech. Anal., 229 (2018), 503–545.
M. Bonforte, F. Cipriani, G. Grillo, Ultracontractive and convergence to equilibrium for supercritical quasilinear parabolic equations on Riemannian manifold, Adv. Differ. Equ., 7 (2003), 843–872.
M. Bonforte, G. Grillo, Super and ultracontractive bounds for doubly nonlinear evolution equations, Rev. Mat. Iberoamericana, 22 (2006), n. 1, 11–129.
M. Bonforte, G. Grillo, Singular evolution on manifolds, their smoothing properties and Sobolev inequalities, Discrete Cont. Dyn. Syst., (2007), 130–137.
M. Bonforte, G. Grillo, Ultracontractive bounds for nonlinear evolution equations governed by the subcritical p-Laplacian, Progress in Nonlinear Differential Equations and Their Applications, Lecture Notes in Pure and Applied Mathematics. Lecture Notes in Math. vol. 61. 15–26 (Trends in Partial Differential Equations of Mathematical Physics). Birkhäuser Basel (2005).
M. Bonforte, R. G. Iagar, J. L. Vazquez, Local smoothing effects, positivity and Harnack inequalities for the fast p-laplacian equation, Adv. Math., 224 (2010), 2151–2215.
H. Brezis, Analyse fonctionelle, Masson, Paris (1983).
F. Cipriani, G. Grillo, Uniform bounds for solutions to quasilinear parabolic equations, J. Differ. Equ., 177 (2001), 209–234.
A. Dall’Aglio, Approximated solutions of equations with\(L^1\)data. Application to the\(H\)-convergence of quasi-linear parabolic equations, Ann. Mat. Pura Appl., 170 (1996), 207–240.
A. Dall’Aglio, L. Orsina, Existence results for some nonlinear parabolic equations with nonregular data, Differ. Integral Equ., 5 (1992), n. 6, 1335–1354.
E. Di Benedetto, Degenerate parabolic equations, Springer-Verlag, New York (1993).
E. Di Benedetto, M. A. Herrero, On the Cauchy problem and initial traces for a degenerate parabolic equation, Trans. AMS, 314 (1989), 187–224.
E. Di Benedetto, M. A. Herrero, Non negative solutions of the evolution p-Laplacian equation Initial traces and Cauchy problem when\(1<p<2\), Arch. Rational Mech. Anal., 111 (1990), n. 3, 225–290.
C. Ebmeyer, J. M. Urbano, The smoothing property for a class of doubly nonlinear parabolic equations, Trans. Am. Math. Soc., 357 (2005), 3239–3253.
S. Fornaro, M. Sosio, V. Vespri, \(L^r_{loc}\)-\(L^{\infty }_{loc}\)estimates and expansion of positivity for a class of doubly non linear singular parabolic equations, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 737–760.
G. Grillo, M. Muratori, M. M. Porzio, Porous media equations with two weights: existence, uniqueness, smoothing and decay properties of energy solutions via Poincaré inequalities, Discrete Contin. Dyn. Syst., 33 (2013), n. 8, 3599–3640.
M. A. Herrero, J. L. Vazquez, Asymptotic behaviour of the solutions of a strongly nonlinear parabolic problem, Ann. Fac. Sci. Toulose Math. (5), 3 (1981), n. 2, 113–127.
K. Ishige, On the existence of solutions of the Cauchy problem for a doubly nonlinear parabolic equation, SIAM J. Math. Anal., 27 (1996), 1235–1260.
A. V. Ivanov, Regularity for doubly nonlinear parabolic equations, Zapiski naucnych seminarov POMI, 209 (1994), 37–59.
P. Juutinen, P. Lindqvist, Pointwise decay for the solutions of degenerate and singular parabolic equations, Adv. Differ. Equ., 14 (2009), 663–684.
T. Kuusi, G. Mingione, Riesz potentials and nonlinear parabolic equations, Arch. Rational Mech. Anal., 212 (2014), 727–780.
O. Ladyženskaja, V. A. Solonnikov, N. N. Ural’ceva, Linear and quasilinear equations of parabolic type, Translations of the American Mathematical Society, American Mathematical Society, Providence (1968).
J. L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires, Dunod et Gauthiers-Villars (1969).
J. J. Manfredi, V. Vespri, Large time behavior of solutions to a class of doubly nonlinear parabolic equations, Electron. J. Differ. Equ. (EJDE), 1994/02 (1994).
J. Moser, A Harnack inequality for parabolic differential equations, Commun. Pure Appl. Math., 17 (1964) 101–134; Correction, ibid., 20 (1967), 231–236.
J. Nash, Continuity of solutions of parabolic and elliptic equations, Am. J. Math., 80 (1958), 931–954.
G. Moscariello, M.M. Porzio, Quantitative asymptotic estimates for evolution problems, Nonlinear Anal. TMA, 154 (2017), 225–240.
A. Porretta, Regularity for entropy solutions of a class of parabolic equations with nonregular initial datum, Dyn. Syst. Appl., 7 (1998), n. 1, 53–71.
M.M. Porzio, Existence of solutions for some noncoercive parabolic equations, Discrete Contin. Dyn. Syst., 5 (1999), n. 3, 553–568.
M.M. Porzio, \(L^\infty _{loc}\)-estimates for degenerate and singular parabolic equations, Nonlinear Anal. Theory Methods Appl., 17 (1991), n. 11, 1093–1107.
M.M. Porzio, On decay estimates, J. Evol. Equ., 9 (2009), n. 3, 561–591.
M.M. Porzio, On uniform and decay estimates for unbounded solutions of partial differential equations, J. Differ. Equ., 259 (2015), 6960–7011.
M.M. Porzio, Existence, uniqueness and behavior of solutions for a class of nonlinear parabolic problems, Nonlinear Anal. TMA, 74 (2011), 5359–5382.
M.M. Porzio, Local regularity results for some parabolic equations, Houston J. Math., 25 (1999), n. 4, 769–792.
M.M. Porzio, Regularity and time behavior of the solutions of linear and quasilinear parabolic equations, Adv. Differ. Equ. 23 (2018), n. 5-6, 329–372.
M.M. Porzio, Asymptotic behavior and regularity properties of strongly nonlinear parabolic equations, Annali di Matematica Pura ed Applicata, 198 (2019), n. 5, 1803–1833.
M.M. Porzio, A new approach to decay estimates. Application to a nonlinear and degenerate parabolic PDE, Rend. lincei Mat. Appl., 29 (2018), 635–659
M.M. Porzio, Uniqueness and estimates for a parabolic equation with\(L^1\)data, to appear on Journal of Convex Analysis. Vol. 28 (2021) n.2.
M.M. Porzio, M.A. Pozio, Parabolic equations with non-linear, degenerate and space-time dependent operators, J. Evol. Equ., 8 (2008), 31–70.
M. M. Porzio, V. Vespri, Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differ. Equ., 103 (1993), 146–178.
A. Prignet, Existence and uniqueness of entropy solutions of parabolic problems with\(L^1\)data, Nonlinear Anal. TMA, 28 (1997), n. 12, 1943–1954.
N.S. Trudinger, Quasilinear elliptic partial differential equations in n variables, Stanford University, Department of Mathematics (1966).
J. L. Vazquez, Smoothing and decay estimates for nonlinear diffusion equations, Oxford University Press (2006).
L. Veron, Effects regularisants des semi-groupes non linéaires dans des espaces de Banach, Ann. Fac. Sci., Toulose Math. (5), 1 (1979), n. 2, 171–200.
Z. Wu, J. Zhao, J. Yin, H. Li, Nonlinear Diffusion equations, Singapore: World Scientific (2001).
J. Zhao, The Cauchy problem for\(u_t = \text{ div }(|\nabla u|^{p-2} \nabla u)\)when\(\frac{2N}{N+2}<p<2\), Nonlinear Anal. Theory Methods Appl., 24 (1995), 615–630.