Regularity Criterion for a Two Dimensional Carreau Fluid Flow

José Luis Díaz Palencia1, Saeed Ur Rahman2, Masood Khan3, Guang‐Zhong Yin1
1Escuela Politécnica Superior, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1,800, Pozuelo de Alarcón, 28223, Madrid, Spain
2Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
3Department of Mathematics, Quaid-I-Azam University, Islamabad 44000, Pakistan

Tóm tắt

AbstractCarreau fluids are a source of research from both theoretical and applied approaches. They have been considered to model different non-newtonian phenomena such as blood flow, plasma and viscoeslastic materials. The purpose of this study is to develop the global regularity criteria for a Carreau fluid in two dimensions flowing in a strip. Firstly, a regularity criteria is shown for the initial set $$\left( u_{10},u_{20}\right) \in H^{1}\left( \Omega \right) $$ u 10 , u 20 H 1 Ω where $$\Omega =\left[ 0,L\right] \times $$ Ω = 0 , L × $$\left[ 0,\infty \right) .$$ 0 , . Secondly, the analysis focuses on a regularity criteria when $$\left( u_{10},u_{20}\right) \in L^{4}\left( \Omega \right) $$ u 10 , u 20 L 4 Ω and, lastly, similar results are obtained for $$\left( u_{10},u_{20}\right) \in H^{2}\left( \Omega \right) $$ u 10 , u 20 H 2 Ω while the fluid velocity vertical component, $$u_2 (x,y)$$ u 2 ( x , y ) , is such that $$\frac{\partial u_{2}}{\partial x}\in L^{4}\left( \Omega \right) $$ u 2 x L 4 Ω and $$\left( \frac{\partial \nabla u_{2}}{\partial y},\Delta u_{2}\right) \in L^{2}\left( \Omega \right) $$ u 2 y , Δ u 2 L 2 Ω .

Từ khóa


Tài liệu tham khảo

Grabski, J.K., Kołodziej, J.A.: Analysis of Carreau fluid flow between corrugated plates. Comput. Math. Appl. 72(6), 1501–1514 (2016)

Carreau, P.J.: Rheological equations from molecular network theories. Trans. Soc. Rheol. 116, 99–127 (1972)

Siska, B., Bendova, H., MacHac, I.: Terminal velocity of non-spherical particles falling through a Carreau model Fluid. Chem. Eng. Process. 44(12), 1312–1319 (2005)

Khan, M., Sardar, H., Gulzar, M., Alshomrani, A.: On multiple solutions of non-Newtonian Carreau fluid flow over an inclined shrinking sheet. Results Phys. 8, 926–932 (2018)

Chhabra, R.P., Uhlherr, P.H.T.: Creeping motion of spheres through shear-thinning elastic fluids described by the Carreau viscosity equation. Rheo Acta 19, 187–195 (1980)

Bush, M.B., Phan-Thein, N.: Drag force on a sphere in creeping motion through a Carreau model fluid. J. Non-Newton. Fluid Mech. 16, 303–313 (1984)

Hyun, Y.H., Lim, S.T., Choi, H.J., John, M.S.: Rheology of poly (ethylene oxide) organoclay nanocomposites. Macromolecules 34(23), 8084–8093 (2001)

Corradini, D.: Buffer additives other than the surfactant sodium dodecyl sulfate for protein separations by capillary electrophoresis. J. Chromatogr. B Biomed. Sci. Appl. 699, 221–256 (1997)

Heller, C.: Principles of DNA separation with capillary electrophoresis. Electrophoresis 22(4), 629–643 (2001)

Chhabra, R.P., Uhlherr, P.H.T.: Creeping motion of Spheres through shear-thinning elastic fluids described by the Carreau viscosity equation. Rheo. Aeta. 19, 187–95 (1980)

Bush, M.B., Phan-Thein, N.: Drag force on a sphere in creeping motion through a Carreau model fluid. J. Non-Newton. Fluid Mech. 16, 303–313 (1984)

Hsu, J.P., Yeh, S.J.: Drag on two coaxial rigid spheres moving in the axis of a cylinder filled with Carreau fluid. Powder Technol. 182, 56–71 (2008)

Uddin, J., Marston, J.O., Thoroddsen, S.T.: Squeeze flow of a Carreau fluid during sphere impact. Phys. Fluid. 24, 073104 (2012)

Shadid, J.N., Eckert, E.R.G.: Viscous heating of a cylinder with finite length by a heigh viscosity fluid in steady longitudinal flow. II. Non-Newtonian Carreau model fluids. Int. J. Heat Mass Transf. 35(27), 39–49 (1992)

Tshehla, M.S.: The flow of Carreau fluid down an incline with a free surface. Int. J. Phys. Sci. 6, 3896–3910 (2011)

Khan, M., Sardar, H.: On steady two-dimensional Carreau nanofluid flow in the presence of infinite shear rate viscosity. Can. J. Phys. 97(4), 400–407 (2019)

Khan, M.: Hashim, Boundary layer flow and heat transfer to Carreau fluid over a nonlinear stretching sheet. AIP Adv. 5(10), 107203 (2015)

Zhong, X.: A continuation principle to the cauchy problem of two-dimensional compressible Navier–Stokes equations with variable viscosity. Math. Phys. Anal. Geom. 23(4), (2020)

Fan, J., Jia, X., Nakamura, G., Zhou, Y.: on well-posedness and blow-up criteria for the magnetohydrodynamics with the Hall and ion-slip effect. Z. Angew. Math. Phys. 66(4), 1695–1706 (2015)

Fan, J., Zhou, Y.: Local well-posedness for the isentropic compressible MHD system with vacuum. J. Math. Phys. 62(5), 051505 (2021)

Kang, L., Xuemei, D., Qunyi, B.: Energy conservation for the nonhomogeneous incompressible ideal Hall-MHD equations. J. Math. Phys. 62(3), 031506 (2021)

Fan, J., Quansen, J., Yanqing, W., Yuelong, X.: Blow up criterion for the 2D full compressible Navier–Stokes equations involving temperature in critical spaces. J. Math. Phys. 62(5), 051503 (2021)

Cao, C., Wu, J.: Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion. Adv. Math. 226, 1803–1822 (2011)