Mô hình hồi quy xác suất chủ quan của lũ lụt sông với sự không chắc chắn tri thức: phân tích dữ liệu bảng ngắn hạn

Ken Hidaka1, Mirai Ikegai2, Satoki Masuda3
1Social System Research Division, Toyota Central R &D Labs., Inc., Nagakute, Japan
2Social System Research Division, Toyota Central R &D Labs., Inc., Bunkyo, Tokyo, Japan
3Department of Civil Engineering, The University of Tokyo, Bunkyo, Tokyo, Japan

Tóm tắt

Thiếu kiến thức đầy đủ về rủi ro lũ lụt có thể dẫn đến các phản hồi "không biết" hoặc không phản hồi trong các cuộc khảo sát nhận thức rủi ro, và việc xử lý không đúng những phản hồi này có thể gây ra sự thiên lệch trong kết quả. Nghiên cứu này tập trung vào khả năng rằng phản hồi "50%" thực sự có nghĩa là "năm mươi-năm mươi" và do đó phản ánh sự không chắc chắn tri thức trong xác suất chủ quan của lũ lụt sông. Chúng tôi thực hiện một phân tích giới thiệu mô hình lớp tiềm ẩn với biến đồng hành như một phương pháp điều chỉnh cho sự không chắc chắn tri thức này. Các kết quả của phân tích tính đến sự không chắc chắn tri thức cho thấy rằng giao tiếp về rủi ro, chẳng hạn như trải nghiệm sơ tán mô phỏng và phân phối thông tin liên quan đến lũ lụt, làm tăng xác suất chủ quan. Hơn nữa, tỷ lệ các lớp tiềm ẩn với sự không chắc chắn tri thức giảm dần qua mỗi đợt khảo sát liên tiếp, qua đó cho thấy việc tiếp thu kiến thức và học hỏi thông qua thí nghiệm trình diễn dẫn đến giảm thiểu sự không chắc chắn tri thức. Phân tích sử dụng mô hình ra quyết định sơ tán cũng cho thấy rằng việc giới thiệu xác suất chủ quan đã góp phần cải thiện khả năng của mô hình. Các kết quả này gợi ý rằng việc tiếp thu kiến thức thông qua giao tiếp về rủi ro và khảo sát bảng ngắn hạn có thể dẫn đến ước lượng nhận thức rủi ro chính xác và ảnh hưởng đến các quyết định sơ tán.

Từ khóa

#lũ lụt sông #xác suất chủ quan #không chắc chắn tri thức #mô hình lớp tiềm ẩn #giao tiếp rủi ro #phân tích dữ liệu bảng ngắn hạn

Tài liệu tham khảo

Ardaya AB, Evers M, Ribbe L (2017) What influences disaster risk perception? Intervention measures, flood and landslide risk perception of the population living in flood risk areas in Rio de Janeiro state, Brazil. Int J Disaster Risk Reduct 25:227–237 Attems MS, Thaler T, Snel KA et al. (2020) The influence of tailored risk communication on individual adaptive behavior. Int J Disaster Risk Reduct 49:101618. https://doi.org/10.1016/j.ijdrr.2020.101618 Bodoque JM, Díez-Herrero A, Amérigo M et al. (2019) Enhancing flash flood risk perception and awareness of mitigation actions through risk communication: a pre-post survey design. J Hydrol 568:769–779 Botzen W, van den Bergh J (2012) Risk attitudes to low-probability climate change risks: WTP for flood insurance. J Econ Behav Organ 82(1):151–166. https://doi.org/10.1016/j.jebo.2012.01.005 Botzen WJW, Aerts JCJH, van den Bergh JCJM (2009) Dependence of flood risk perceptions on socioeconomic and objective risk factors. Water Resour Res. https://doi.org/10.1029/2009WR007743 Botzen WW, Kunreuther H, Michel-Kerjan E (2015) Divergence between individual perceptions and objective indicators of tail risks: evidence from floodplain residents in New York City. Judgm Decis Making 10(4):365–385 Bruine de Bruin W, Fischbeck PS, Stiber NA et al. (2002) What number is fifty-fifty?: redistributing excessive 50% responses in elicited probabilities. Risk Anal 22(4):713–723. https://doi.org/10.1111/0272-4332.00063 de Bruin WB, Fischhoff B, Millstein SG et al. (2000) Verbal and numerical expressions of probability: it’s a fifty-fifty chance. Organ Behav Human Decis Process 81(1):115–131. https://doi.org/10.1006/obhd.1999.2868 Bubeck P, Botzen WJW, Aerts JCJH (2012) A review of risk perceptions and other factors that influence flood mitigation behavior: review of flood risk perceptions. Risk Anal 32(9):1481–1495 Burningham K, Fielding J, Thrush D (2008) It’ll never happen to me: understanding public awareness of local flood risk. Disasters 32(2):216–238 Dayton CM, Macready GB (1988) Concomitant-variable latent-class models. J Am Stat Assoc 83(401):173–178 Działek J, Biernacki W, Bokwa A (2013) Challenges to social capacity building in flood-affected areas of southern Poland. Natural Hazards Earth Syst Sci 13(10):2555–2566 Ferrari S, Cribari-Neto F (2004) Beta regression for modeling rates and proportions. J Appl Stat 31(7):799–815 Fischhoff B, Bruine De Bruin W (1999) Fifty-Fifty=50%? J Behav Decis Mak 12(2):149–163 Fox CR, Rottenstreich Y (2003) Partition priming in judgment under uncertainty. Psychol Sci 14(3):195–200. https://doi.org/10.1111/1467-9280.02431 Gallagher J (2013) Learning about an infrequent event: evidence from flood insurance take-up in the US. SSRN Electron J. https://doi.org/10.2139/ssrn.3078097 Geospatial Information Authority of Japan (2020) Inundation navigation (in Japanese). https://suiboumap.gsi.go.jp/pdf/Data-riyo_manual.pdf Heidenreich A, Masson T, Bamberg S (2020) Let’s talk about flood risk—evaluating a series of workshops on private flood protection. Int J Disas Risk Reduct 50:101880. https://doi.org/10.1016/j.ijdrr.2020.101880 Hotelling H (1940) The selection of variates for use in prediction with some comments on the general problem of nuisance parameters. Ann Math Stat 11(3):271–283 Ikegai M, Hidaka K, Masuda S (2023). Short-term panel data analysis of the effect of flood risk communication on individual evacuation decisions. https://doi.org/10.21203/rs.3.rs-3254909/v1 IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. Tech Rep Kakimoto R, Ueno Y, Yoshida M (2016) The study of disaster risk perception paradox based on protection motivation theory. Infrastruct Plan Manag 72(5):51–63. https://doi.org/10.2208/jscejipm.72.I_51 Kellens W, Zaalberg R, Neutens T et al. (2011) An analysis of the public perception of flood risk on the Belgian coast. Risk Anal Int J 31(7):1055–1068 Kellens W, Terpstra T, De Maeyer P (2013) Perception and communication of flood risks: a systematic review of empirical research. Risk Anal Int J 33(1):24–49 Kieschnick R, McCullough BD (2003) Regression analysis of variates observed on (0, 1): percentages, proportions and fractions. Stat Model 3(3):193–213. https://doi.org/10.1191/1471082X03st053oa Kono T, Okuno M, Yamaura K (2022) Regional differences in cognitive dissonance in evacuation behavior at the time of the 2011 Japan earthquake and tsunami. Natural Hazards 111(1):139–162. https://doi.org/10.1007/s11069-021-05047-3 Koto City (2016) Koto city flood hazard map. https://www.city.koto.lg.jp/470601/20200701.html Lechowska E (2018) What determines flood risk perception? A review of factors of flood risk perception and relations between its basic elements. Natural Hazards 94(3):1341–1366. https://doi.org/10.1007/s11069-018-3480-z Lechowska E (2022) Approaches in research on flood risk perception and their importance in flood risk management: a review. Natural Hazards 111(3):2343–2378. https://doi.org/10.1007/s11069-021-05140-7 Lee D, Yoon S, Park ES et al. (2018) Factors contributing to disaster evacuation: the case of South Korea. Sustainability 10(10):3818 Lindell MK, Hwang SN (2008) Households’ perceived personal risk and responses in a multihazard environment. Risk Anal Int J 28(2):539–556 Merz B, Thieken AH (2005) Separating natural and epistemic uncertainty in flood frequency analysis. J Hydrol 309(1–4):114–132 Okumura M, Tsukai M, Shimoaraiso T (2001) Reliance on disastar warning and responses. Infrastruct Plan Rev 18:311–316. https://doi.org/10.2208/journalip.18.311 O’Neill E, Brereton F, Shahumyan H et al. (2016) The impact of perceived flood exposure on flood-risk perception: the role of distance. Risk Anal 36(11):2158–2186 Raaijmakers R, Krywkow J, van der Veen A (2008) Flood risk perceptions and spatial multi-criteria analysis: an exploratory research for hazard mitigation. Natural Hazards 46(3):307–322. https://doi.org/10.1007/s11069-007-9189-z Rheinberger CM, Hammitt JK (2018) Dinner with bayes: on the revision of risk beliefs. J Risk Uncertain 57(3):253–280. https://doi.org/10.1007/s11166-018-9294-2 Rogers RW (1975) A protection motivation theory of fear appeals and attitude change1. J Psychol 91(1):93–114 Rollason E, Bracken LJ, Hardy RJ et al. (2018) Rethinking flood risk communication. Natural Hazards 92(3):1665–1686. https://doi.org/10.1007/s11069-018-3273-4 Royal A, Walls M (2019) Flood risk perceptions and insurance choice: do decisions in the floodplain reflect overoptimism? Risk Anal 39(5):1088–1104. https://doi.org/10.1111/risa.13240 Rufat S, Botzen WW (2022) Drivers and dimensions of flood risk perceptions: revealing an implicit selection bias and lessons for communication policies. Glob Environ Change 73:102465 Simas AB, Barreto-Souza W, Rocha AV (2010) Improved estimators for a general class of beta regression models. Comput Stat Data Anal 54(2):348–366 Smithson M, Segale C (2009) Partition Priming in Judgments of Imprecise Probabilities. J Stat Theory Pract 3(1):169–181. https://doi.org/10.1080/15598608.2009.10411918 Smithson M, Merkle EC, Verkuilen J (2011) Beta regression finite mixture models of polarization and priming. J Educ Behav Stat 36(6):804–831. https://doi.org/10.3102/1076998610396893 Swiler LP, Paez TL, Mayes RL (2009) Epistemic uncertainty quantification tutorial. In: Proceedings of the 27th international modal analysis conference Terpstra T, Lindell MK, Gutteling JM (2009) Does communicating (flood) risk affect (flood) risk perceptions? Results of a quasi-experimental study. Risk Anal Int J 29(8):1141–1155 Thistlethwaite J, Henstra D, Brown C et al. (2018) How flood experience and risk perception influences protective actions and behaviors among Canadian Homeowners. Environ Manag 61(2):197–208. https://doi.org/10.1007/s00267-017-0969-2 Verkuilen J, Smithson M (2012) Mixed and mixture regression models for continuous bounded responses using the beta distribution. J Educ Behav Stat 37(1):82–113. https://doi.org/10.3102/1076998610396895 Viscusi WK (1989) Prospective reference theory: toward an explanation of the paradoxes. J Risk Uncertain 2:235–263 Viscusi WK, O’Connor CJ (1984) Adaptive responses to chemical labeling: are workers Bayesian decision makers? Am Econ Rev 74(5):942–956 Wachinger G, Renn O, Begg C et al. (2013) The risk perception paradox-implications for governance and communication of natural hazards: the risk perception paradox. Risk Anal 33(6):1049–1065. https://doi.org/10.1111/j.1539-6924.2012.01942.x Yamada F, Kakimoto R, Yamamoto M et al. (2011) Implementation of community flood risk communication in Kumamoto Japan. J Adv Transport 45(2):117–128 Zeigler DJ, Brunn SD, Johnson Jr JH (1981) Evacuation from a nuclear technological disaster. Geographical review pp 1–16. https://www.jstor.org/stable/214548, publisher: JSTOR Zhang Y, Hwang SN, Lindell MK (2010) Hazard proximity or risk perception? Evaluating effects of natural and technological hazards on housing values. Environ Behav 42(5):597–624